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Abstract

Computational models are increasingly essential to systems neuroscience. Models serve as proofs of concept, tests of sufficiency,
and as quantitative embodiments of working hypotheses and are important tools for understanding and interpreting complex
data sets. In the olfactory system, models have played a particularly prominent role in framing contemporary theories and pre-
senting novel hypotheses, a role that will only grow as the complexity and intricacy of experimental data continue to increase.
This review will attempt to provide a comprehensive, functional overview of computational ideas in olfaction and outline a com-
putational framework for olfactory processing based on the insights provided by these diverse models and their supporting data.
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Introduction

In natural environments, airborne chemical stimuli are dis-

tributed unpredictably in time and space, and odorants from

innumerable sources intermix freely. The olfactory system

must be able to detect potential signals of interest within these

chemically noisy environments, correctly extract these signals
from a complex and changing odor background to form stim-

ulus representations, compare these constructed representa-

tions to those of previously experienced odors, differentiate

relevant from irrelevant stimuli, and cue an appropriate re-

sponse. Many of the neural circuit elements comprising the

olfactory system have been proposed to contribute to these

processes in particular ways; for example, multiple feedback

and feedforward interactions among olfactory structures,
as well as between olfactory and non-olfactory areas, are

thought to contribute to the filtering and construction of ol-

factory representations. Computational models of olfactory

processing have been increasingly utilized to describe and in-

terpret these complex and interrelated phenomena.

Primary olfactory sensory neurons (OSNs) number in the

millions in rodents. Their axons are highly convergent, tar-

geting specific, discrete neuropilar synaptic regions within
the input layer of the olfactory bulb (OB) called glomeruli.

In hamsters, for example, between 1300 and 4700 OSNs

expressing the same odorant receptor complement converge

upon each glomerulus (Schoenfeld and Knott, 2004). These

large populations of redundant OSNs and their correspond-

ingly high convergence ratios have been proposed to yield

advantages such as an improved signal-to-noise ratio, a cor-

responding increase in effective stimulus sensitivity, and an

increased range of tuning to different odorant concentra-

tions (van Drongelen et al., 1978; Duchamp-Viret et al.,

1989;Meisami, 1989; Cleland and Linster, 1999). The molec-

ular receptive ranges or chemical receptive fields of these

odorant receptors overlap substantially, such that the iden-
tity of odorants is not associated with the activation of a spe-

cific receptor but rather is represented by a distributed,

combinatorial code (Adrian, 1953; Moulton, 1967; Stewart

et al., 1979; Kauer, 1991), now recognized as a pattern of

activation across many receptors. Owing to the specific

homotypic convergence of OSN axons, these odor-specific

activity patterns can be most clearly observed in imaging

studies of OB glomeruli (Friedrich and Korsching, 1997;
Johnson et al., 1998, 1999, 2004; Rubin and Katz, 1999;

Meister and Bonhoeffer, 2001; Wachowiak et al., 2002).

These overlapping representations underlie two critical

properties of the olfactory system that a labeled-line solution

would not. First, the number of unique odor representations

is not limited to the number of different receptor types

(roughly 1000 in mice; Mombaerts, 1996) but can be esti-

mated as mn, where n denotes the number of receptor types
and m denotes the number of recognizable states that each

sensor can assume, ultimately limited by the signal-to-noise

ratio of the system. Even if only two receptor states, active

and inactive, were recognized, this would enable roughly

21000 potential odor stimuli to be discriminated in mice.

Second, the fact that structurally and perceptually similar

odorant molecules will activate correspondingly overlapping

sets of olfactory receptors (ORs) (Linster et al., 2001b,
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2002; Cleland et al., 2002) establishes a basis for the recog-

nition of stimulus similarity in the olfactory system. This is

a prerequisite for basic postsensory cognitive processes such

as generalization (Shepard and Chang, 1963; Shepard, 1987;

Cleland et al., 2002) and a tolerance for variance among re-
peated stimulus samples that a labeled-line system would

have no clear means of generating.

Distributed patterns of activity in response to chemical

stimuli are transmitted to the OB via OSN axons that termi-

nate in the glomeruli of its input layer. The OB is believed to

filter and transform these incoming sensory data, performing

normalization, contrast enhancement, and similar opera-

tions before conveying the processed olfactory information
to several different secondary olfactory structures via mitral

cell axon collaterals (Cleland and Linster, 2003). Notably,

the bulb constitutes the last common stage at which olfactory

sensory representations can be processed before the signal

diverges dramatically into these multiple secondary struc-

tures. It is clear from recent investigations that the perceptual

qualities of odorants can be predicted, to a limited degree,

from the patterns of activation that they evoke at the OB in-
put layer (Linster and Hasselmo, 1999; Linster et al., 2001b,

2002; Cleland et al., 2002). However, several aspects of odor

perception, for example, changes in perception and discrim-

ination capacity due to odor intensity or prior experience,

cannot be predicted solely by this first-order representation

as reflected in glomerular activation patterns. Nor is the con-

verse true; mitral cell responses in behaving animals cannot

be predicted solely by the odor(s) presented but depend sub-
stantially on odor contingency (Kay and Laurent, 1999),

as previously suggested in field potential recordings from

the OB (Di Prisco and Freeman, 1985; Gray et al., 1986;

Freeman and Grajski, 1987; Grajski and Freeman, 1989).

Furthermore, the OB receives substantial centrifugal projec-

tions from both cortical and neuromodulatory centers, and

its responses to odor presentations are strongly regulated by

these centrifugal inputs as well as odor learning and experi-
ence (Kay et al., 1996; Kay, 2003, 2005; Ravel et al., 2003;

Wilson and Stevenson, 2003; Martin et al., 2004; Wilson

et al., 2004). It is therefore safe to assume that the OB plays

an important role in processing incoming sensory informa-

tion. Accordingly, many models of OB signal processing

have been developed, which are grouped here into studies

of (1) filtering and contrast enhancement, (2) mechanisms

underlying oscillations and spike synchronization, and (3)
odor segmentation and associative memory function. In ad-

dition, a number of detailed biophysical models of bulbar

neurons have been constructed, in many cases to address

how their intrinsic properties underlie and interact with net-

work properties.

Filtering and contrast enhancement

The high convergence ratio between OSNs expressing a par-

ticular odorant receptor and their target glomeruli in the OB

(Figure 1A) is believed to improve the signal-to-noise ratio

during odorant detection (vanDrongelen et al., 1978), poten-

tially overcoming the limiting noise inherent in the transduc-

tionmechanisms of individual OSNs (Lowe andGold, 1995).

In principle, this improves the coding capacity of the olfac-
tory system, increasing the number of different odor-specific

patterns that can be discriminated, as well as improves the

effective maximum sensitivity of the system (Duchamp-Viret

et al., 1989; Duchamp-Viret et al., 2000) (Figure 1B). This

property may also contribute toward increasing the range

of odor ligand concentrations that can be represented by

OB glomeruli without saturation (Figure 1C). Specifically,

the modeling of signal transduction and convergence prop-
erties among OSNs suggested that regulation of the intracel-

lular gain between G protein–coupled odorant receptors and

their cyclic nucleotide-gated channel effectors could underlie

both an extremely high sensitivity for odorant stimuli and

a substantial broadening of the dose–response profile of

OB glomeruli (Cleland and Linster, 1999). This hypothesis

provides a possible solution to the conundrum of how collec-

tive concentration–response curves measured by glomerular
imaging can be substantially broader than those measured in

individual OSN recordings (Duchamp-Viret et al., 1990;

Friedrich and Korsching, 1997; Bozza et al., 2002), enabling

preservation of the ratios of activation levels among glomer-

uli across broader concentration ranges and hence poten-

tially facilitating the recognition of odor quality across

changes in concentration. Another approach has been sug-

gested by Anton and colleagues (1991). Noting that the ac-
tivity of each glomerulus is sampled and conveyed centrally

by a number of mitral cells (on the order of 50 in hamsters;

Schoenfeld and Knott, 2004), and that mitral cell firing fre-

quencies do not scale monotonically with concentration as

do those of OSNs (Harrison and Scott, 1986; Meredith,

1986; Wellis et al., 1989), these authors proposed that the

synaptic circuitry within each glomerulus could compute

a frequency-to-spatial transformation on the incoming infor-
mation. That is, the number of responding mitral cells within

a glomerulus, rather than their firing rates, would reflect the

firing rates of the sensory neurons projecting to that glomer-

ulus in response to odor stimulation (Figure 1D).

Contrast enhancement is a common property of sensory

systems that narrows (sharpens) sensory representations by

specifically inhibiting neurons on the periphery of the repre-

sentation, thus enhancing the contrast between signal and
background (Figure 2A).Anumber of computationalmodels

have investigated the contrast enhancement potential of OB

circuitry, most of which, by analogy with the retina, have in-

vestigated the potential role of lateral inhibitory projections.

Classically, bulb models have emphasized lateral inhibition

mediated by mitral cell lateral dendrites (Rall and Shepherd,

1968; Shepherd and Brayton, 1979; Schild, 1988; Urban,

2002; Davison et al., 2003). These lateral dendrites form re-
ciprocal synapses with inhibitory granule cell spines in the ex-

ternal plexiform layer of the bulb, forming a network through
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which mitral cells inhibit one another as well as themselves

(Isaacson andStrowbridge, 1998), although the region receiv-

ing this inhibition is not clearly localized (Luo and Katz,
2001; Debarbieux et al., 2003; Djurisic et al., 2004). Subse-

quent models proposed that contrast enhancement was in-

stead mediated by lateral inhibition mediated by the

relatively superficial periglomerular (PG) cells (Linster and

Gervais, 1996; Linster and Hasselmo, 1997) (Figures 1A

and 2B). This hypothesis offered the substantial advantage

that lateral inhibition could be delivered onto mitral cells

in the glomerular region of their apical dendrites, a location
better capable of preventing spike initiation in these cells ow-

ing to the close proximity of excitatory and inhibitory inputs

(Liu, 2004; Mel and Schiller, 2004). In a model based on this

hypothesis, Linster andHasselmo (1997) further showed that
if the activation of PGcells ismodulated by cholinergic inputs

from the horizontal limb of the diagonal band, a relatively

stable number of active mitral cells can be maintained inde-

pendent of the intensity of olfactory input or the set of OSNs

activated by the odorant. In this model, granule cells served

instead to modulate the gain of mitral cell activity and were

necessary in order to obtain stable average firing rates. In-

deed, subsequent studies have shown that PG cells are ap-
propriately modulated by acetylcholine (Castillo et al., 1999),

Figure 1 Glomerular computations and convergence. (A) Simplified structure of the OB as represented in most computational models. Large populations of
olfactory sensory neurons (osn) expressing the same receptor (particular shades of gray) converge onto common glomeruli (glom) in the OB, within which they
synapse onto the dendrites of periglomerular (pg) andmitral (mi) cells. Mitral cells also excite granule cells (gr) via their lateral dendrites, and granule cells in turn
inhibit mitral cells; functionally, this mediates lateral inhibition among mitral cells. PG cells are primarily associated with one or a small number of glomeruli and
project axons to a few other glomeruli; these have also been suggested to mediate lateral inhibition betweenmitral cells. A number of other cell types have also
been characterized in the bulb, such as short axon and tufted cells, that are rarely included in computational models; furthermore, established heterogeneity
within the cell typesmodeled has usually been neglected. (B) The high convergence of OSN axons ontomitral cells within each glomerulus significantly improves
the signal-to-noise ratio in mitral cells as compared to OSNs. Even if a weak odorant stimulus were to evoke only a single additional spike in each OSN above its
basal rate of spiking (OSN activity; bold lines), this high convergence ratio can generate a robust odor response in a postsynaptic mitral cell (mitral cell activity),
hence enabling mitral cells to reliably represent odor stimuli at lower concentrations than can OSNs (van Drongelen et al., 1978). Horizontal bars depict the time
of odorant presentation. The signal-to-noise ratio (SNR: ratio of stimulus-evoked spikes to all spikes) that can be measured in mitral cells is improved (larger)
compared to that measured in OSNs. (C) While OSN concentration–activation curves are steep, enabling accurate representations of ligand–receptor binding
over a range of roughly 1-log-unit concentration, the considerably broader curves observed in glomeruli can be explained if the convergent OSN population is
nonuniform in spare receptor capacity or other determinants of intracellular gain (Cleland and Linster, 1999). If OSNs with identical odorant selectivity but
exhibiting different functional spare receptor capacities (different half-activation values) project onto a single glomerulus, the summed concentration–activation
curve of that glomerulus can span several log units of concentration. (D) Frequency-to-spatial transformation by local glomerular circuits proposes that different
populations of mitral cells within each glomerulus are activated as a function of the average firing rate of the convergent OSNs (Anton et al., 1991). Low-
concentration odorants (left panel) evoke weak activity in a given receptor-specific OSN subpopulation, generating increased activity in only one mitral cell. In
contrast, a high-concentration odor stimulus (right panel) evokes greater activity in the OSN population and hence generates measurable excitatory responses
in three mitral cells. Horizontal bars depict the time of odorant presentation.
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and some of the behavioral predictions from these models

have been confirmed in rats (Linster et al., 2001a; Linster

and Cleland, 2002).
Contrast enhancement, the effects of which have been di-

rectly observed in the OB (Yokoi et al., 1995), can be func-

tionally defined as a process of competition between

neurons proportional to the similarity of the information that

they mediate. Simplified models of the olfactory system,

based on one-dimensional odor subspaces, have been able

to implement contrast enhancement using lateral inhibition

(Linster and Gervais, 1996; Linster and Hasselmo, 1997,
1999; Linster and Smith, 1997; Linster and Cleland, 2001;

Cleland and Linster, 2002) as well as spike synchrony

(Cleland and Linster, 2002) and have been effective at inter-

preting behavioral and physiological data derived from single

monotonically varying odorant series (Yokoi et al., 1995;

Linster and Hasselmo, 1999; Cleland et al., 2002; Cleland

and Narla, 2003). However, to escape this limitation and
modelmore realistic, high-dimensional odor spaces (Hudson,

1999; Korsching, 2001; Alkasab et al., 2002), subsequent

models have relied upon networks constructed so that the

strength of PG-mediated inhibition is effectively propor-

tional to receptive field similarity rather than the physical

proximity of glomeruli. One network model based on this as-

sumption has been shown to best reproduce calcium imaging

data obtained from honeybee OSNs and projection neurons
(analogous to mitral cells), while networks based on nearest-

neighbor lateral inhibition performed comparably to net-

works based on random inhibitory projections (Linster

et al., 2005). Another suchmodel has successfully reproduced

Figure 2 Contrast enhancement. (A) Contrast enhancement is a phenomenon observed in most sensory systems by which marginally activated neurons are
excluded from a stimulus-specific ensemble by inhibition, hence sharpening the sensory representation and differentiating it from other, similar representations.
In the absence of contrast enhancement, the tuning curves of cells 1 and 2 substantially overlap (left panel), and the stimulus represented by the vertical line
evokes activity in both cells. If contrast enhancement is enabled, for example, by the addition of lateral inhibition such that each cell inhibits the other, the two
cells both becomemore narrowly tuned, and their receptive fieldsmay no longer overlap. The stimulus represented by the vertical line now evokes activity only in
cell 2, while cell 1 is inhibited (right panel). (B) Computational models of the OB have proposed that inhibitory PG cells could mediate contrast enhancement in
the glomerular layer of the OB. In these models, PG cells receive direct sensory input within a given glomerulus and inhibit mitral cells in neighboring glomeruli
via axonal projections. If an odor stimulus activates a range of neighboring glomeruli, increasing the level of PG cell–mediated inhibition would lead to con-
comitantly sharpened representations among mitral cells. Left panel: in the absence of PG cell–mediated inhibition, mitral cell activity directly reflects OSN
activity. Right panel: the addition of inhibitory projections mediated by PG activity inhibits the more weakly activated mitral cell out of the active ensemble. With
strong contrast enhancement, only the most strongly activatedmitral cells become activated by odor inputs, while weakly activated mitral cells are inhibited. (C)
Nontopographical contrast enhancement based on local glomerular computations (Cleland and Sethupathy, 2004). In this model, contrast enhancement is
generated within the stimulus-response profile of each individual glomerulus, resulting in sharpening of the odor-evoked representation across the glomerular
layer. Within each glomerulus, mitral (Miin) and periglomerular (PGin) cells have the same tuning curves but different response properties and both receive
parallel input from OSNs. Mitral cell output (Miout) is additionally shaped by PG-mediated dendrodendritic inhibition, such that only the most strongly excited
mitral cells are activated (lower right panel), whilemoreweakly excitedmitral cells exhibit net inhibitory responses (lower left panel). The shape of theMiout curve
generates the familiar on-center/inhibitory-surround function of contrast enhancement (inset).
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mixture processing properties measured in rats (Wiltrout

et al., 2003; Linster and Cleland, 2004). One set of models

has proposed a means for contrast enhancement to be

effected by spike synchronization, independent of the under-

lying firing rates (Linster and Cleland, 2001; Cleland and
Linster, 2002). Finally, nontopographical models of contrast

enhancement are also capable of distributing inhibition in

proportion to receptive field similarity, but they approach

the problem differently, relying on intraglomerular computa-

tions and broad feedback inhibition to effect contrast en-

hancement via a ‘‘winner-take-most’’ algorithm in which

the most active neurons inhibit those that are less active

(Figure 2C; Cleland and Sethupathy, 2004). Furthermore,
unlike mechanisms based upon lateral projections, nontopo-

graphical contrast enhancement does not require a built-in

foreknowledge of the similarities in molecular receptive

ranges expressed by different OB glomeruli in order to dis-

tribute inhibition correctly and is entirely independent of

the physical location of glomeruli within the OB.

Mechanisms underlying oscillations and spike
synchronization

While recent models have begun to favor glomerular-layer

mechanisms for contrast enhancement, granule cell activity

also clearly shapesmitral cell response patterns and hence the

presumptive odor representations that emerge from the OB.

Specifically, several computational models of the OB have
suggested that the temporal pattern of spiking among mitral

cells may play a role in odor representation (Schild, 1988;

Meredith, 1992; White et al., 1992, 1998; White and Kauer,

2001). While it is clear that temporal response patterns in mi-

tral cells do change as a function of odor identity, there is as

yet no broadly accepted theory of how these response pat-

terns may contribute to the representation of odorant stim-

uli. Figure 3A illustrates an example of how odor identity
could be represented by temporal patterning in mitral cells.

Each of four odors A–D evokes characteristic temporal spike

patterns in two mitral cells (left panel). If the instantaneous

spike rates of these mitral cells are plotted against each other

during the odor response, each odor evokes a different tra-

jectory representative of the odor (right panel).

One of the most widely studied features of OB processing

has been the dynamic oscillatory activity patterns observed in
the bulb in response to odor stimulation, particularly given

the observation that mitral cell spiking is correlated in time

with these field oscillations (Freeman and Grajski, 1987;

Eeckman and Freeman, 1990; Kay et al., 1996; Kashiwadani

et al., 1999; Kay, 2003). Some researchers have proposed that

odor quality may be represented in dynamic attractors

formed in the OB (Freeman, 1979, 1987, 1994; Li and

Hopfield, 1989; Erdi et al., 1993; Fukai, 1996; Hoshino
et al., 1998; Breakspear, 2001). Models of these phenomena

have traditionally evaluated these responses as coupled oscil-

lators, attributing the dynamics to reciprocal feedback inter-

actions between mitral cell secondary dendrites and granule

cells (Figure 3B; Freeman, 1979, 1987, 1994; Li andHopfield,

1989; Grobler and Erdi, 1991; Erdi et al., 1993; Ermentrout

and Kleinfeld, 2001). However, several studies have focused

on intraglomerular mechanisms such as gap junctions medi-
ating the synchronization of mitral cells emerging from the

same glomerulus (Schoppa and Westbrook, 2001, 2002;

Schoppa and Urban, 2003; Christie et al., 2005; Hayar

et al., 2005). Indeed, a recent model of these intraglomerular

interactions supports these proposals, suggesting that recip-

rocal coupling among mitral cell apical dendrites could be

instrumental in generating local spike synchronization

(Migliore et al., 2005). It is also increasingly clear that the
dynamics of the OB are tightly coupled with those of the

piriform cortex and that both depend on mutual feedback

between the two structures (Gray and Skinner, 1988; Neville

and Haberly, 2003; Martin et al., 2004); combined bulb–

cortex models have suggested possible roles for these

interactions (Fukai, 1996; Li and Hertz, 2000). Other aspects

of piriform cortical dynamics have also been modeled

(Wilson and Bower, 1992; Liljenstrom and Hasselmo,
1995;Claverol et al., 2002;Xu andPrincipe, 2004), albeit with

less focus on their functional role (but see Granger and

Lynch, 1991).

Recently, models of these field oscillatory properties have

begun to emphasize their relationship to the regulation of

spike timing in mitral cells (Davison et al., 2003; Margrie

and Schaefer, 2003), suggesting that patterns of spike syn-

chronization among mitral cells responding to the same sen-
sory input are important contributors to the odorant

representation at this level. In the example shown in Figure

3C, the average firing rates of the two model mitral cells do

not contribute to the differentiation of odors A and B.

However, the phase of firing during oscillatory cycles does

contribute odor identity information sufficient to discrimi-

nate these two odors. This type of coding scheme was first

proposed for the insect antennal lobe by Laurent and co-
workers (Laurent, 1996; Laurent et al., 1996; Stopfer

et al., 1997), supported by behavioral data demonstrating

that a reduction in the synchronization of projection neuron

action potentials impaired odor discrimination in honeybees

(Stopfer et al., 1997). This phenomenon was subsequently

studied in genetically modified mice (Nusser et al., 2001)

and has been modeled by several groups. These models have

primarily served to illustrate and emphasize the circuit prop-
erties and mechanisms by which the regulation of spike

synchronization among secondary neurons could contribute

to odor representations. Specifically, some models have ex-

plored the biophysical bases of slow temporal patterning

and fast oscillogenesis among secondary olfactory neurons

(Bazhenov et al., 2001), while others have demonstrated

how the regulation of spike synchronization among second-

ary neurons can influence the readout of information at the
next level of processing (Perez-Orive et al., 2004; Sivan and

Kopell, 2004), facilitate contrast enhancement, and underlie
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the salience of olfactory stimuli (Linster and Cleland, 2001;

Cleland and Linster, 2002).

Odor segmentation and associative memory
function

Odor segmentation is the general term for the problem

of how the olfactory system is able to segregate and iden-

tify different odorants that are encountered simultaneously.

As most odors comprise multiple separate odorant mole-

cules, it is far from clear how the olfactory system can

parse the multitude of odorant stimuli present at any given

time and attribute each to appropriately separate sources.
One approach has been to hypothesize that odors emitted

from different sources can be segregated by OB circuitry

based upon their differential fluctuations in time (Fort

and Rospars, 1992; Hendin et al., 1998; Hopfield, 1999).

Odor segmentation could thereafter be performed in the

OB using source-separation algorithms dependent upon

associative memory function. Generally, such models hy-

pothesize that associative memories for patterns of OB

activity evoked by known odorants become embedded in

bulbar circuitry and can then be used to recognize these

patterns when they recur, even in degraded form. Specifi-
cally, a model by Hendin et al. (1998) illustrates how, if

the glomerular layer feeds into a mitral-granule cell layer

for which appropriate dynamics for an associative memory

function have been implemented, each odor can be sepa-

rately represented in successive inhalation cycles when

multiple (known) odors are presented at the same time.

Olfactory associative memory functions have been more

commonly attributed to the piriform cortex, one of the

Figure 3 Oscillations and synchrony. (A) Any given mitral cell in the OB may respond to different odorant stimuli (A, B, C, and D) with a variety of temporally
complex spike patterns including interwoven excitatory and inhibitory phases. It has been proposed that these temporal patterns may contribute to odor
representations in the vertebrate OB and the analogous insect antennal lobe (Laurent, 1999; Laurent et al., 2001). If the instantaneous firing rates of
two cells are depicted as a function of each other, a distinct trajectory (in time) can be plotted for each odorant stimulation. For clarity, three discrete epochs
are depicted rather than a continuous function; the three time windows depicted during odorant presentation (left panels; horizontal bar) correspond to the
three vectors comprising each trajectory in the graphs (right panels). In contrast, if average firing rates over the application of the stimulus were plotted, the
responses to the three odorants could not be differentiated (not shown). (B) The reciprocal synaptic interactions between mitral (Mi) and granule (Gr) cells have
often been simulated as a system of coupled oscillators driven by external inputs. In such models, the variance among the stimulus amplitudes across these
inputs generates a map of field oscillations with variable amplitudes and fixed phase lags across the OB. For clarity, bidirectional connections are depicted from
only a single column. Oscillation amplitudes across the OB are representative of the odor stimulus (compare the patterns evoked by the two odors). (C) Field
oscillatory dynamics are believed to reflect and/or influence spike timing in mitral cells, potentially resulting in odor-specific populations of mitral cells based on
spike synchrony rather than overall activity. While the overall activity patterns evoked by odors A and B are very similar, selection for spikes relatively synchronized
with one another andwith the oscillatory field potential reveals two clearly odor-specific subpopulations. Consequently, when the firing rates of the two cells are
plotted against one another, the representations of the two odors are nearly indistinguishable (middle panel). In contrast, when the relative phases of the two
cells are plotted, clearly different representations of the two odors can be observed (right panel).
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targets of mitral cell axons projecting from the OB.

Specifically, the piriform cortex has been proposed to medi-

ate the associative memory functions necessary for odor-

context learning (Haberly and Bower, 1989; Hasselmo

et al., 1990; Haberly, 2001) and hierarchical clustering
(Ambros-Ingerson et al., 1990). For example, cortical

short-term synaptic depression can be employed to filter

out stable background odorants, whereas long-term synaptic

plasticity can store associations between neurons respond-

ing to the same odor stimuli (Figure 4). Indeed, the exten-

sive intrinsic feedback network in this cortex and its

integration with afferent inputs closely resembles the struc-

ture of traditional theoretical associative memory networks
as first described by Marr (1971). Several laboratories

have constructed models of piriform cortex, implementing

these associative memory functions (Haberly and Bower,

1989; Ambros-Ingerson et al., 1990; Hasselmo et al., 1990;

Barkai and Hasselmo, 1994; Hasselmo et al., 1997) as well

as exploring the role of cortical cholinergic modulation in

their regulation (Hasselmo et al., 1990, 1997; Patil and

Hasselmo, 1999; Linster and Hasselmo, 2001; Linster

et al., 2003).

Detailed biophysical models

Most models of the olfactory system to date have empha-

sized network-level interactions and the properties of OB

and piriform cortical circuitry using simplified cellular mod-

els conducive to these larger scale simulations. However,

several relatively detailed biophysical models of olfactory

neurons—particularly OSNs and mitral cells—have also

been constructed. Biophysical (or compartmental) models
focus on membrane and cellular properties rather than net-

work phenomena; to this end, they include substantial mor-

phological, biophysical, and/or physiological detail. For

example, membranes are modeled with membrane resistivity

and capacitance values drawn from experimental data, with

realistic or data-derived lengths, diameters, and morpholog-

ical branching patterns along with models of passive and ac-

tive ion channels inserted in appropriate regions of the model

Figure 4 Associative memory function in olfactory cortex. (A) Piriform cortex exhibits the fundamental anatomical features necessary for the implementation
of associativememory: extrinsic input from the OB to each pyramidal cell via the lateral olfactory tract (LOT) and extensive intrinsic excitatory connections among
pyramidal cells. These intrinsic associative connections are subject to synaptic plasticity, also crucial for associative memory function, and exhibit long-term
potentiation (LTP). Additionally, several classes of local inhibitory interneurons have been described in the piriform cortex. Piriform pyramidal neurons project
back to the OB, as well as to other structures such as the entorhinal cortex (EC). (B) Schematic representation of an associative memory network. The critical
features are (1) external inputs to associative neurons, (2) all-to-all excitatory connections among these neurons (association fibers), and (3) a learning rule that
modifies the strengths of these connections when external inputs are being learned by the network (modifiable synapses). (C) Learning and recall in an as-
sociative memory network. Learning (left panel). An olfactory stimulus activates a subset of pyramidal cells (three dark cells) via distributed afferent projections
from the OB to the PC. During learning, excitatory synaptic connections between pyramidal cells activated by that odorant are strengthened via a Hebbian
plasticity rule (dark semicircles denote strengthened synapses). Recall (right panel). After learning a pattern, if a noisy or degraded example of that pattern is
presented to the system, the stored odorant pattern can be reconstructed due to the previously strengthened connections. Dark semicircles denote previously
strengthened synapses. Owing to the previously strengthened synapses, activation of just two dark cells secondarily activates a third cell (gray), reconstructing
the previously learned pattern.
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neuron. Biophysical models usually can be directly inter-

related with electrophysiological data. However, they are

often poor choices for large-scale models, due to the large

numbers of weakly defined parameters as well as their sub-

stantial computational costs. Several detailed OSN models
have illustrated how ligand–receptor binding and nonlinear

transduction processes can underlie the experimentally ob-

served response properties of these cells (Malaka et al.,

1995; Rospars et al., 1996; Vermeulen et al., 1996, 1997;

Lansky and Rospars, 1998; Vermeulen and Rospars, 1998;

Kaissling, 1998, 2001; Cleland and Linster, 1999; Rospars

et al., 2000; Kaissling and Rospars, 2004). Compartmental

models of mitral cells have been used to elucidate intrinsic
cellular phenomena, such as the localization of spike initi-

ation in mitral cells (Shen et al., 1999; Chen et al., 2002)

and the effects of intraglomerular gap junctions (Migliore

et al., 2005), as well as synaptic phenomena such as long-

term potentiation at the OSN–mitral synapse (Ennis et al.,

1998). Other compartmental models have focused on bridg-

ing the gap between cellular and systems properties in both

vertebrate and insect systems (Bhalla and Bower, 1993;
Davison et al., 2000, 2003; Bazhenov et al., 2001; Cleland

and Sethupathy, 2004). These detailed models make a clear

case that the morphological and biophysical properties of

OB neurons underlie and define their computational capa-

bilities. While many emergent network properties are best

studied with simple cellular models, biophysical models

have revealed computational mechanisms that are beyond

the capacity of these simpler models to elucidate. Ulti-
mately, reconciliation of these detailed models with large-

scale functional models will be necessary for progress in the

understanding of olfactory processing.

Synthesis

Computational models of the olfactory system have contrib-
uted immensely to the framing of experimental problems and

the construction of complex hypotheses regarding its func-

tion. Here, we briefly outline a working hypothesis of olfac-

tory system function, integrating the insights derived from

the models reviewed above and constrained by their support-

ing data sets.

Inhaled odorants bind to specific populations of ORs

expressed on the apical surface of primary OSNs, which
are distributed across the nasal epithelium. ORs are broadly

tuned for odorant ligands, such that even simple monomo-

lecular odorants activate a number of receptor types to dif-

fering degrees, producing combinatorial patterns of

activation among OR classes that reflect odor quality. While

the pattern of OSN activation depends primarily upon the

ligand–receptor affinities of multiple OR populations for

the various molecular moieties (odotopes) of odors’ compo-
nent molecules, it also is likely influenced by other factors

such as the fluid dynamics of inhalation, the net molecular

sorptiveness of odorant molecules, and the behavioral

regulation of odor sampling (reviewed in Schoenfeld and

Cleland, 2005). Other physical factors that affect the pattern

of OSN activation include the concentration of odorants as

well as interference caused by overlaps among the represen-

tations of multiple odotopes that are simultaneously pre-
sented to the olfactory epithelium. Different odotopes

may compete for receptors for which they have not only dif-

ferent affinities but also different efficacies (Duchamp-Viret

et al., 2003; Araneda et al., 2004; Oka et al., 2004; Sanz et al.,

2005), such that a reduction in the activation of an OR gene–

specific OSN population may as well connote an increased

concentration of a relatively antagonistic odotope as a re-

duced concentration of an agonist odotope. In short, the pat-
tern of OSN activation in any natural scene context is likely

to be an unknown composite of multiple, overlapping, and

degraded primary odorant representations. It is from this un-

promising rawmaterial that the olfactory systemmust detect

and identify relevant stimuli.

OSNs expressing the same OR and hence sharing the same

molecular receptive range project their axons to specific glo-

meruli within the OB input layer (Mombaerts et al., 1996).
Hence, the primary olfactory representation can be conve-

niently measured by imaging glomeruli: that is, the axonal

arborizations of convergent OSNs in the OB glomerular

layer. Some glomerular imaging techniques are explicitly

presynaptic (Friedrich and Korsching, 1997; Wachowiak

et al., 2002), even those that are not are likely to reflect pre-

dominantly presynaptic activity due to the disproportionate

number of OSNs arborizing within each glomerulus com-
pared with the number of bulbar neurons arborizing therein

(Shepherd and Greer, 1998; Schoenfeld and Knott, 2004);

glomeruli, of course, do not contain cell bodies. Under sim-

ple experimental conditions, these glomerular response pro-

files are predictive of odor quality, as measured behaviorally

(Johnson and Leon, 2000; Linster et al., 2001b; Cleland et al.,

2002; Leon and Johnson, 2003). However, this concordance

is not robust even to changes in odorant concentrations and
certainly cannot be expected to persist in the context of

a complex olfactory natural scene.

Mitral cells, along withmiddle and deep tufted cells, are the

principal output neurons of the OB. They are directly post-

synaptic to OSNs, and as such the pattern of mitral/tufted

cell activation across the bulb constitutes the secondary ol-

factory representation. In mammals, mitral cells sample

from only a single glomerulus, hence a glomerulus along with
its associated mitral cells and interneurons has been referred

to as an ‘‘odor column’’ (Shepherd and Greer, 1998) that

derives its receptive field primarily from a single population

of convergent OSNs. However, the mitral/tufted activation

pattern also depends on the activity of several classes of

bulbar interneurons and hence is substantially transformed

with respect to the primary olfactory representation. For ex-

ample, some form of normalization of stimulus concentra-
tions is clearly evident in the concentration–response

profiles of mitral cells. Mitral cell activity patterns are
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relatively stable across concentrations compared with the

changes in OSN responses (Chalansonnet and Chaput,

1998), and when they are affected by odorant concentration

changes, these changes are often complex and difficult to

predict. Some mitral cells progress from excitation to inhibi-
tion with increasing concentrations, while others become

more excited, often exhibiting shorter latencies to first spike;

other cells display yet other profiles (Harrison and Scott,

1986; Meredith, 1986; Wellis et al., 1989; Chalansonnet

and Chaput, 1998). What is clear, however, is that mitral

cells do not monotonically increase their activity in response

to increased stimulus intensities, nor, consequently, is there

likely to be a substantial broadening of mitral cell activity
across the bulb owing to the recruitment of lower affinity

receptors. These are two essential ways in which the structure

of the secondary (mitral) olfactory representation differs

from that of the primary representation as measured among

OSNs, and this transformation provides essential constraints

to models of bulbar mechanisms.

Normalization, the process by which sets of values are

rescaled to a common or tractable range, requires a negative
feedback loop that is effectively global in scope; that is, the

strengthof feedback inhibition shouldbe scaled to theaverage

activity across the bulb rather than to local activation levels

if the profiles of relative activation among odor columns are

to be preserved. Contrast enhancement, in turn, requires

the delivery of inhibition onto odor columns proportional

to the activation of columns exhibiting similar receptive fields

(molecular receptive ranges). In the OB, the synaptic triad
connecting OSN arbors, PG cell dendritic spines, and mitral

cell dendrites in close proximity (reviewed by Shepherd and

Greer, 1998) coupled with the lateral excitatory network me-

diated by external tufted and short axon cells (Aungst et al.,

2003; Hayar et al., 2004) can effect both normalization and

contrast enhancement between the primary and secondary

olfactory representations (Cleland and Sethupathy, 2004).

Briefly, OSNs activate mitral cells, external tufted cells,
and PG cell dendritic spines in parallel, and these PG spines

deliver inhibition onto mitral cell apical dendrites, closely

apposing the excitatory OSN inputs. Nontopographical con-

trast enhancement models (Cleland and Sethupathy, 2004)

predict that PG cell–mediated feedforward inhibition of

the mitral cell will predominate when the odor column is

weakly activated, while direct OSN activation of the mitral

cell will predominate when the odor column is strongly acti-
vated (Figure 2C), consistent with recordings from rabbit

mitral cells (Yokoi et al., 1995). Normalization is effected

via the activation of external tufted cells, which proportion-

ately excite a lateral excitatory network of external tufted and

short axon cells, thereby broadly inhibitingmitral cell activity

across the bulb via sign-inverting PG cells.

The net activation of mitral cells is then translated into

trains of action potentials, the precise timing of which
appears to be regulated by coordinated oscillations measur-

able in field recordings across the OB. These bulbar oscilla-

tions are thought to depend on an extensive excitatory–

inhibitory network of mitral cell secondary dendrites and

granule cell interneurons, as well as reciprocal cortical con-

nections that modulate bulbar activity according to behav-

ioral state (Kay, 2003; Ravel et al., 2003; Lagier et al., 2004;
Martin et al., 2004). Mitral cell spike synchronization pat-

terns can mediate a second level of feature extraction to

the odor representation, as follower neurons in diverse cen-

tral olfactory structures (Cleland and Linster, 2003) process

incoming mitral cell spikes via synaptic learning rules, the

best known of which rely upon precise spike timing (Song

et al., 2000; Cleland and Linster, 2002). Centrifugal modu-

latory inputs also influence olfactory processing and learning
mechanisms within the OB (Sullivan et al., 2000; Linster and

Cleland, 2002; Yuan et al., 2003), emphasizing the active role

of the OB in shaping and transforming odor signals and the

importance of behavioral state.

Conclusions

Computational models have an established and growing role

within systems neuroscience. As our understanding of neural

processing and interactions becomes more sophisticated,

computer models of these systems are increasingly necessary

in order to understand and interpret experimental results. In

the olfactory system in particular, computational modeling

will no doubt be essential to understand the integration of

the many factors influencing the construction and transfor-
mation of odor representations.
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