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Sensory representations depend strongly on the descending regulation of perceptual processing. Gener-
alization among similar stimuli is a fundamental cognitive process that defines the extent of the variance
in physical stimulus properties that becomes categorized together and associated with a common
contingency, thereby establishing units of meaning. The olfactory system provides an experimentally
tractable model system in which to study the interactions of these physical and psychological factors
within the framework of their underlying neurophysiological mechanisms. The authors here show that
olfactory associative learning systematically regulates gradients of odor generalization. Specifically,
increasing odor-reward pairings, odor concentration, or reward quality—each a determinant of associa-
tive learning—significantly transformed olfactory generalization gradients, each narrowing the range of
variance in odor quality perceived as likely to share the learned contingency of a conditioned odor
stimulus. However, differences in the qualitative features of these three transformations suggest that these
different determinants of learning are not necessarily theoretically interchangeable. These results dem-
onstrate that odor representations are substantially shaped by experience and descending influences.
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Interstimulus variance is inescapable. Even a nominally identi-
cal odor stimulus, delivered multiple times to the same animal
under controlled conditions, will evoke different—albeit related—
responses across any population of activated neurons. As it is
essential both to recognize recurring stimuli despite such variabil-
ity and to distinguish among genuinely different stimuli, a central
problem in perceptual physiology arises: how are categorical rep-
resentations of meaningful stimuli formed that can appropriately
group or differentiate individual stimulus responses to correctly
identify each of their sources and implications? In any given
context, how much variance among stimulus representations is
tolerated before they are interpreted as arising from different
sources, thereby warranting different behavioral responses? Cate-
gorizing too great a range of stimulus variance into a common
percept (lumping) effectively reduces the resolution of the sensory
system; in contrast, treating highly similar stimuli as unrelated
(splitting) is counterproductive, hindering recognition of the useful
fact that things that smell very much like a Cortland apple are
probably also apples.

Generalization is a fundamental cognitive process that governs
the grouping of similar stimuli into functional categories perceived

as likely to share contingency (Shepard, 1987). It differs from
discrimination in that the emphasis is not on whether a set of
stimuli can be distinguished from one another, but on whether the
subject associates these stimuli with the same outcome or impli-
cations. The degree of generalization among stimuli is closely
related to their similarity, declining as their neural representations
become more dissimilar; indeed, behavioral generalization among
experimentally presented stimuli is a key basis for the empirical
assessment of perceptual similarity (Cleland, Morse, Yue, & Lin-
ster, 2002; Linster & Hasselmo, 1999; McLaren & Mackintosh,
2002). The resulting psychometric functions describing how in-
creasingly dissimilar stimuli are progressively less likely to be
grouped together are termed generalization gradients.

Generalization gradients are consistent in form, declining expo-
nentially with increased psychometric distance from a consequen-
tial stimulus (Shepard, 1987). Among stimuli that vary along
simple dimensions such as visual hue or auditory pitch, psycho-
metric distances tend to directly reflect the underlying physical
dissimilarities in wavelength or tone frequency. Higher-order stim-
uli such as shapes and phonemes require nonmetric multidimen-
sional scaling to transform their psychometric similarities onto a
single axis, but once this is achieved, the resulting generalization
gradients adhere to the same principles evident with simpler stim-
uli, declining exponentially with dissimilarity along this synthetic,
psychometric axis (Kruskal, 1962; Shepard, 1962a, 1962b, 1987,
2001). Despite this consistency in form, generalization gradients
are dynamic; a number of psychological as well as physical
factors affect generalization gradients and hence alter the
breadth and form of perceptual categories. For example, sensory
experience affects generalization across visual hues (Guttman &
Kalish, 1956) and across auditory frequencies during development
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(Kerr, Ostapoff, & Rubel, 1979), whereas stimulus intensity af-
fects olfactory quality generalization in bees (Bhagavan & Smith,
1997; Wright & Smith, 2004) and mice (Cleland & Narla, 2003).
We here demonstrate that multiple different determinants of asso-
ciative learning systematically regulate gradients of olfactory gen-
eralization in mice. Specifically, they each impart greater condi-
tioning to the conditioned odor stimulus, as predicted, and also
progressively narrow the generalization of contingency to more
highly similar odorants, though not necessarily via identical trans-
formations or mechanisms (see Discussion).

The olfactory system provides a unique opportunity to study the
neural underpinnings of the cognitive process of generalization in
a behaviorally and physiologically reduced model system. First,
behaviorally validated trajectories of stimulus variance (typically
homologous series of aliphatic odorants) provide “sequentially
similar” sets of odors that are experimentally analogous to series of
simple visual or auditory stimuli that vary in hue or pitch (Cleland
et al., 2002). As with studies of auditory pitch, the ordering of
these basic odor series enables the straightforward measurement of
generalization among progressively dissimilar stimuli, bypassing
the nonmetric multidimensional scaling techniques required to
depict generalization gradients among higher-order stimuli
(Kruskal, 1962; Shepard, 1962a, 1962b, 1987, 2001). Second, the
perceptual similarity of odorants correlates both with similarities
in their molecular structures and with the degree of overlap in the
sensory neuron activation patterns that they evoke, enabling study
of the physical representation and processing of odor similarity
within neural circuitry (Mandairon et al., 2006; Yokoi, Mori, &
Nakanishi, 1995). Third, lesion and pharmacological studies are
increasingly indicating that olfactory generalization is strongly
regulated within the olfactory bulb, a well-described, anatomically
isolated, and experimentally accessible cortical network (Kiselyc-
znyk, Zhang, & Linster, 2006; Linster & Cleland, 2002; Linster,
Garcia, Hasselmo, & Baxter, 2001; Mandairon et al., 2006). These
advantages enable a clean neurophysiological approach to a fun-
damentally cognitive question: how do factors such as learning and
motivational state regulate the construction of olfactory perceptual
categories?

We investigated olfactory learning and generalization among
odor stimuli in mice using established techniques (Cleland et al.,
2002; Cleland & Narla, 2003). Briefly, animals were conditioned
to associate a given odorant (the conditioned stimulus; CS) with a
5 mg sucrose pellet reward (unconditioned stimulus; US) for
which they had to dig in dishes of scented sand. After training, the
strength of the CS-US association was measured by the time mice
spent digging in a similarly scented dish containing no reward
before giving up. Generalization gradients were measured by test-
ing in this manner an ordered series of odorants structurally and
perceptually similar to the CS. A second dish of unscented sand
was present during both conditioning and testing as a control;
however, at no time were multiple odorants presented simulta-
neously in generalization tasks.

In the present study, we varied three experimental parameters
each broadly considered by contemporary learning theories to
regulate the rate and/or asymptotic maximum of learning. To
emphasize the parameters of interest within a simple framework,
we modeled our predictions based on the original, trial-based
Rescorla-Wagner relationship (Rescorla & Wagner, 1972), in

which learning VA about stimulus A is incremented during training
according to the equation

�VA � �A�(�-Vtotal), (1)

where �A represents CS salience (odor intensity), � and � together
reflect US properties (reward quality), Vtotal represents the aggre-
gate prediction of the US by all cues present during the condition-
ing trial, and �VA represents the change in associative strength
predicted for each conditioning trial. Learning thereby increases
with repeated iterations of CS-US pairings until it approaches an
asymptotic level determined by the properties of the US. As this
relationship does not incorporate time-derivative factors incorpo-
rated into subsequent real-time learning models (Brandon, Vogel,
& Wagner, 2003; Sutton & Barto, 1990), known temporal deter-
minants of learning such as training-testing latency and massed
versus spaced training were not used as variables in this study.
Similarly, elemental and componential theories of conditioning
and generalization (Atkinson & Estes, 1963; Brandon et al., 2003;
McLaren & Mackintosh, 2000, 2002) may more directly reflect the
nature of physiological odor representations and offer indepen-
dence from the limitations of discrete associative trials, but for
simplicity are not engaged herein. The strengths and limitations of
the Rescorla-Wagner model have been reviewed at length by
Miller and colleagues (Miller, Barnet, & Grahame, 1995).

Method

Experiments

Four separate studies were performed according to established
procedures (Cleland et al., 2002). First, a discrimination study was
performed to demonstrate that 5 mg reward pellets with different
proportions of sucrose and cellulose were differentially rewarding
to mice and hence able to serve as unconditioned stimuli of
systematically differing incentive values. Then, three generaliza-
tion studies were performed: a variable-training study, a variable-
salience study, and a variable-reward study.

Subjects

Four separate, age-matched cohorts of male CD-1 mice (outbred
strain; Charles River Laboratories, Wilmington, MA) were used:
12 mice were used in the discrimination study, 23 in the variable-
training study, 10 in the variable-salience study, and 17 in the
variable-reward study. All mice were shaped (trained to dig for
rewards in response to odor cues) from 5 to 8 weeks of age and
employed in experiments between 9 and 18 weeks of age. Mice
were maintained on a shifted 12L:12D cycle; all behavioral train-
ing was conducted during their dark cycle (9:00 a.m. to 9:00 p.m.),
during which mice are most active and tend to perform well
(Hyman & Rawson, 2001). Water was continuously available;
mice were food-deprived for 18 hours preceding each session to
motivate them to obtain sucrose rewards. Mice were fed immedi-
ately after an experimental session, and were not deprived of food
on two subsequent days. All procedures were performed under the
auspices of a protocol approved by the Cornell University Institu-
tional Animal Care and Use Committee.

Odor Sets and Dilutions

Multiple odor sets were used in each study to enable coun-
terbalancing among subjects and ensure that results were not
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dependent on the use of specific odor sets. All mice in a cohort
were tested using every odor set employed in the corresponding
study; odor sets were presented sequentially in the order listed
in Figure 1. Each odor set in the three generalization studies
consisted of a homologous series of 2 to 5 structurally similar,
unbranched aliphatic odorants plus one structurally dissimilar
odorant used as a control (Figure 1C-E). Vapor pressures of
pure odorants were estimated with the Hass-Newton equation as
implemented in ACD/Boiling Point & Vapor Pressure Calcula-
tor (version 4.5; Advanced Chemistry Development, Toronto,
Ontario, Canada); pure odorants were diluted in mineral oil to
concentrations theoretically emitting vapor-phase partial pres-
sures of 0.01 Pa in all studies except for the higher-intensity
condition in the variable-salience study, in which dilutions were
made to 1.0 Pa for both conditioning and test odorants. The
corresponding vol/vol liquid dilutions in mineral oil are listed in
Figure 1. Solvent surface effects and other nonlinearities were
neglected. These dilutions should be considered a reduction in
the variance of odor concentrations rather than true gas-phase
concentration matching as could be achieved by gas chromato-
graphic measurements. Odorants were diluted �18 hours in
advance of each experiment to ensure an even distribution of
odorant within the mineral oil solvent.

Apparatus

All behavioral training took place in modified Plexiglas
mouse cages (28 � 17 � 12 cm) divided into two subchambers
(A and B) by a sliding, opaque Plexiglas board. Glass petri
dishes (Pyrex, 60 mm diameter, 15 mm height) were used for
placement of odorants and reward. At the beginning of each
training session, separate dishes were prepared for the condi-
tioned odorant stimulus (CS) and each of the test odorants (S#,
D). Each dish was filled with �10 ml of white play sand
(YardRight; Southdown, Inc., Easton, PA) and inoculated with
100 �l of diluted odorant. During conditioning trials, the re-
ward, a 5 mg sucrose or sucrose/cellulose pellet (Noyes Preci-
sion Pellets; Research Diets, Inc., New Brunswick, NJ), was
buried in the sand of the CS-scented dish. The sand and odorant
in each dish were replaced after every trial.

Shaping

Mice were shaped between 5 and 8 weeks of age by being
taught to retrieve a reward by digging in dishes of scented sand.
Mice were placed in subchamber A of the modified cage
apparatus, with the divider between the two subchambers
closed. Two sand-filled dishes were then placed in subchamber
B: one containing both a reward and a conditioning odorant
(Figure 1A), the other containing no reward and no odorant.
Each trial began when the divider was removed, at which point
the mouse entered subchamber B and was allowed to dig in both
dishes until it retrieved the reward (i.e., self-correction was
permitted). The mouse was then returned to subchamber A for
the 1-min intertrial interval, during which the dishes were
replaced for the next trial. To speed learning, the reward was
placed on top of the sand in the odor-containing dish during the
first few trials; after the mouse reliably retrieved the reward
over several trials, the reward was buried more deeply in the

sand. Dishes were moved around randomly within subchamber
B on subsequent trials such that odor was the only reliable
predictor of which dish contained a buried reward. Shaping was
considered complete when a mouse would (1) reliably identify
the reward-containing dish and retrieve deeply buried rewards,
(2) dig in the odor-containing dish even in the absence of a
reward (thus controlling for the possibility of mice directly
detecting the reward), and (3) show no interest after training in
digging in odors scented with dissimilar odorants, indicating
that their reward associations were odor-specific. Mice gener-
ally reached criterion after 2 weeks’ time, or approximately 5
days of shaping.

Behavioral Testing

In the first study, we used a motivated, forced choice simul-
taneous odor discrimination paradigm (Cleland et al., 2002) to
validate the use of reward pellets with varying sucrose/cellulose
ratios as reinforcers of systematically varying efficacy. Simul-
taneous discrimination tasks differ fundamentally from gener-
alization tasks in that they reward animals for successfully
distinguishing between two odor stimuli presented together.
Mice were placed in subchamber A with the divider closed.
Each trial began when the divider was removed, enabling the
mouse to enter subchamber B that contained two sand-filled
dishes. Each dish was scented with a distinctly different odorant
(Figure 1B) and contained a different reward (i.e., each con-
tained a 5 mg reward pellet with a different sucrose/cellulose
composition, or no reward at all); the available rewards were
100%, 75%, 50%, and 25% sucrose, balance cellulose. For each
session, over the course of 15 identical trials presented in
immediate succession, one of the two dissimilar odorants was
repeatedly paired with a higher sucrose content reward and the
other with a lower sucrose content reward or with no reward.
Specifically, two sets of pairings were performed. In the first
set, one odor was always paired with a 100% sucrose reward
tablet whereas the other was paired with a 75%, 50%, or 25%
sucrose tablet or with no reward (0%) to establish that mice
preferred higher-sucrose to lower-sucrose reward tablets. In the
second set of pairings, one odor was paired with one of the four
types of reward tablet whereas the other was paired with no
reward to establish that mice preferred any reward pellet, even
the least-desirable (25% sucrose), to the prospect of no reward
at all.

The dish in which a mouse dug first served as the dependent
variable; each trial was scored as a preference either for the
odorant associated with the higher-sucrose-content reward or for
the odorant associated with the lower-sucrose reward. Data anal-
yses were performed on the number of trials out of 14 (i.e.,
excluding the first trial) in which the higher-sucrose odorant was
chosen. Mice were permitted to dig in only one of the two dishes
and to retrieve only one of the two rewards each trial; that is,
self-correction was not permitted. The spatial locations of the
dishes within subchamber B were varied randomly among trials.
Different mice were trained using different reward contingencies
for the same odorant pairs, odor-reward pairings were counterbal-
anced, and four different odor sets were used to repeat the exper-
iment (Figure 1B); hence, the specific odors used as cues were not
relevant to the results. As only 15 trials were performed in each
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Figure 1. Odorant sets with corresponding vol/vol dilutions in mineral oil.
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discrimination task, these data probably reflect differences in
learning rates rather than steady-state error probabilities.

In the three subsequent studies, we used an odor generalization
paradigm to measure the degree to which mice generalized be-
tween test odorants (Cleland et al., 2002; Cleland & Narla, 2003;
Linster & Hasselmo, 1999). In this paradigm, mice were first
placed in subchamber A with the divider closed. During condi-
tioning trials, two sand-filled dishes were then placed in subcham-
ber B: one containing both a sucrose reward and a conditioned
odorant CS, the other containing no reward and no odorant. Each
trial began when the divider was removed, at which point the
mouse entered subchamber B and was allowed to dig in both
dishes until it retrieved the reward. The mouse was then returned
to subchamber A for the 1-min intertrial interval, during which the
divider was replaced and dishes were prepared for the next trial.
During each of the subsequent test trials, one dish was scented
either with the CS odorant or with one of a series of similar or
dissimilar test odorants, whereas the other contained no odorant,
and neither dish contained any reward. The amount of time that a
mouse spent digging in the scented sand served as the dependent
variable. The duration of test trials was 1 minute, whereas condi-
tioning trials ended after mice recovered the sucrose reward (up to
a maximum of 1 minute). Intertrial intervals were 1 minute long,
and test trials began directly after the completion of the condition-
ing trials.

In the variable-training study, mice were divided into three
training groups; each mouse was trained on an odorant CS over 3,
6, or 12 conditioning trials. For each of the eight odor sets, one
aliphatic odorant was selected as the conditioned odorant (CS);
this conditioned odorant, a structurally similar odorant (S1) and a
control odorant (D) served as test odorants (see Figure 1C). Sub-
sequently, three unrewarded test trials (in which mice were offered
a choice between a dish scented with a test odorant and an
unscented dish) were performed in a pseudorandom order. To
control for handling, all mice were placed in the testing chamber
a total of 15 times; for mice given 12 conditioning trials this
included the 12 conditioning trials plus three test trials, while mice
given six or three conditioning trials were exposed to subchamber
B six or nine times, respectively, before the first conditioning trial,
but were presented with no odorant or reward during those dummy
trials. To control for accumulated experience, mice were assigned
to different training groups on subsequent odor sets; hence, each
mouse received approximately the same amount of training over
the course of the study.

The variable-salience study is a novel reanalysis of previously
published data (Cleland & Narla, 2003). The methods employed
are substantially similar to those described in the variable-training
study, except that the variable of interest was odor concentration;
for each of the odor sets used (Figure 1D), half of the mice were
trained and tested on odorants presented at 0.01 Pa whereas the
other half were trained and tested at 1.0 Pa.

In the variable-reward study, mice were divided into two train-
ing groups. Each mouse was trained on a conditioned odorant over
six conditioning trials; mice in one group were rewarded with a
100% sucrose reward tablet (better reward) whereas mice in the
other group were rewarded with a 25% sucrose tablet (lesser
reward). For each of the six odor sets used (Figure 1E), one
aliphatic odorant was selected as the conditioned odorant (CS);
this conditioned odorant, two sequentially similar odorants (S1,

S2) and a structurally dissimilar control odorant (D) all served as
test odorants. Subsequently, two unrewarded test trials (in which
the mouse was offered a choice between a dish scented with a test
odorant and an unscented dish), two more rewarded trials using the
CS odor, and two more unrewarded test trials were performed. The
four test trials were performed in a pseudorandom order; further-
more, mice were assigned to different training groups on subse-
quent odor sets; hence, each mouse received approximately the
same assortment of rewards over the course of the study.

In all generalization studies, during 1-min test trials, total dig-
ging times in the dish containing each test odorant were recorded
using a stopwatch. Each mouse encountered each test odorant only
once. The experimenter was blind to test odorant identities during
performance of these experiments.

Data Analysis

In the discrimination task, the degrees of preference for higher-
proportion sucrose rewards were assessed by one-factor ANOVA
with degree of preference as main effect as well as by linear
regression (R2). Individual comparisons were also made with two-
tailed one-sample t tests compared to chance (i.e., 7 of 14 trials
correct). For initial assessments of CS conditioning, one-way
analyses of variance were performed; to further assess the effects
of training, for which there were three groups, post hoc multiple
comparisons tests using Tukey’s honestly significant difference
(HSD) criterion were also performed.

In the generalization tasks, repeated-measures analyses of vari-
ance using Wilks’s lambda criterion were first performed on
generalization gradients of digging times with odorant (CS, S#, D)
as a repeated-measures main effect and the learning variable of
interest (number of conditioning trials, CS odorant concentration,
or US reward value) as a between-subjects main effect. Post hoc
multiple comparisons analyses were subsequently performed on
the variable-training data (that included three between-subjects
factors) using Tukey’s HSD criterion. For figure annotation, and
for elaborations in the Results in which comparisons of responses
to individual odorants were made between experimental groups,
independent samples t tests were used to generate p values (two-
tailed; equal variances not assumed). All statistical analyses were
performed using SPSS statistical software. The criterion for sig-
nificance was set at � � .05. Error bars depict standard errors of
the mean.

Results

Validation of Independent Variables

The three independent variables in this study were the number
of iterations of CS-US pairing, the CS salience (�), and the US
quality (�, �). The pairing iterations were explicitly represented by
the number of conditioning trials preceding testing. Variation of
the CS salience was accomplished by varying odorant stimulus
concentrations. Stimulus intensity has long been recognized as a
factor in CS salience, sometimes explicitly segregated from other
(diagnostic) factors by using the term intensive salience (Tversky,
1977). To avoid artifacts owing to uncontrolled diagnostic sa-
lience, all studies were performed multiple times with different
odor sets (see Figure 1), and counterbalanced so that each animal
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was tested on every odorant and under every experimental condi-
tion manipulated within a study (see Method).

Variation of the US quality, a factor predicted to shape learning
through changing motivational incentive, was accomplished by
rewarding mice with pellets consisting of different proportions of
sucrose from 100% (best reward) to 25% (least reward). The
nonnutritive carbohydrate cellulose was selected as filler so that
nutritive and hedonic contributions to reward quality perception
(Sclafani & Ackroff, 2004, 2006; Sheffield & Roby, 1950) would
correlate. Although sucrose concentrations in liquid rewards have
been successfully used to systematically vary reward quality
(Sclafani & Ackroff, 2003), the use of pellets in variable-reward
contexts (Phillips, Willner, & Muscat, 1991) is uncommon. There-
fore, to validate this technique, we subjected a cohort of mice to an
odor discrimination task. Mice were presented with two sand-filled
dishes scented with dissimilar odorants (Figure 1B; note that this
procedure differs from generalization tasks in which only one of
the two dishes was scented). Over 15 identical trials performed in
immediate succession, one of the two odorants was repeatedly
paired with a higher-sucrose-content reward and the other with a
lower-sucrose content reward. The dish in which mice first dug
was scored in each trial.

Sucrose proportion had a significant effect on reward preference
(ANOVA; F(3, 44) � 13.267; p 	 .001); specifically, mice
preferred higher-sucrose-content pellets in direct proportion to
sucrose concentration (R2 � 0.472; p 	 .001; Figure 2A), reflect-
ing the comparable linearity of reward value observed in liquid
sucrose dilution series (Sclafani & Ackroff, 2003). Furthermore,
mice strongly preferred any reward pellet tested to no reward
(one-sample t tests; p 	 .001 in all cases; Figure 2B).

Conditioned Responses to CS Odors Follow
Associative Learning Rules

Increases in the values of each of the three parameters—CS-US
pairings, CS salience, and US value—are predicted to increase
associative learning levels. Indeed, we found that our three exper-
imental manipulations each exerted a significant effect on asso-
ciative learning, as predicted by learning theory and measured by
digging times in response to presentation of the conditioned odor-
ant in the absence of reward.

First, increasing the number of pairings of the odor CS with
reward significantly strengthened the response to the subsequent
unrewarded presentation of that odor (main effect of training; F(2,
181) � 17.436; p 	 .001). Post hoc analysis using Tukey’s
honestly significant difference (HSD) criterion demonstrated that
all three pairwise comparisons were also significant ( p 	 .05;
Figure 3A). In the second study, the salience of the odor CS was
varied by adjusting odor concentrations 100-fold, from 0.01 Pa to
1.0 Pa. As theoretically predicted, this greater salience signifi-
cantly enhanced associative learning (main effect of intensity, F(1,
57) � 5.281, p 	 .05; Figure 3B). Finally, the reward value of the
US was varied by rewarding mice with tablets of either 100%
sucrose or 25% sucrose/75% cellulose, as described and validated
above, in otherwise identical associative learning protocols. As
predicted, this manipulation of US value significantly affected
associative learning (main effect of reward, F(1, 88) � 8.724, p 	
.01; Figure 3C). The effects of these three parameters on odor
generalization gradients were then also assessed.

Effect of the Number of CS-US Pairings on
Generalization Gradients

The number of pairings of the odor CS with reward had a
significant effect on the odor generalization gradient, as measured
by digging times in response to presentation of a series of test
odorants in the absence of reward (Wilks’s lambda, interaction of
odorant and training; F(4, 360) � 5.633, p 	 .001). Post hoc
multiple comparisons testing further demonstrated that six pairings
of the CS with reward produced significantly different effects on
the generalization gradient than did three pairings (Tukey’s HSD;
p 	 .05), and 12 pairings significantly different effects than six
( p 	 .05).

Further testing showed that whereas increased CS-US pairings
progressively increased digging times in response to all odors, the
effect on the CS itself was proportionately stronger than it was on
other, less similar odorants. Multiple comparisons analysis
(Tukey’s HSD) demonstrated that digging times in response to the
odor CS significantly increased between three and six pairings, and
again between six and 12 pairings, whereas digging in response to
odors S or D increased significantly only when directly comparing
three pairings with 12 pairings ( p 	 .05 in all cases; Figure 4A).
This characteristic pattern has also been observed in studies of the
effect of increased CS-US pairings on the visual generalization of
hue (Guttman & Kalish, 1956).

Effect of CS Salience (Intensity) on
Generalization Gradients

The intensity of the odor CS had a significant effect on the odor
generalization gradient (Wilks’s lambda, interaction of odorant

Figure 2. Odor discrimination task revealing reward preferences (A).
Preference for rewards of higher quality when each reward is reliably cued
by an easily discriminable odor. When offered a choice between a 100%
sucrose pellet or an otherwise identical pellet containing some proportion
of cellulose, mice preferred the higher-sucrose pellets in direct proportion
to the difference in sucrose content (R2 � 0.472; p 	 .001). Asterisks
denote significant preference for the 100% sucrose pellet (one-sample t
test, comparison vs. chance, p 	 .01); ns: not significant. (B). Preference
for different rewards over no reward. When offered a choice between a
sucrose/cellulose pellet and no reward, mice strongly preferred even the
least-favored reward tested (25% sucrose/75% cellulose) to no reward.
Asterisks denote significant preference for the reward (one-sample t test,
comparison vs. chance, p 	 .001). Percentage values on the abscissa refer
to sucrose content; 0% connotes no reward. Ordinates depict the number of
trials in which the mouse chose the scented dish containing the designated
reward pellet. Trials were scored beginning with the second trial, after the
mouse first had the opportunity to learn the odor-reward association; hence
14 trials were scored for each mouse.
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and intensity; F(5, 53) � 5.738, p 	 .001), although this effect
differed qualitatively from the corresponding effect of increased
CS-US pairings. Specifically, higher CS intensity significantly
increased digging times in response to the odor CS ( p 	 .05)
whereas significantly decreasing responsiveness to all other odors
( p 	 .05 in all cases; Figure 4B).

Effect of US Value on Generalization Gradients

The reward value of the US had a significant effect on the odor
generalization gradient (Wilks’s lambda, interaction of odorant
and reward; F(3, 86) � 4.084, p 	 .01), which again differed
qualitatively from the effects of the other two learning determi-
nants studied. Specifically, higher US value significantly increased
digging times in response to the odor CS ( p 	 .01), but neither
increased nor decreased responsiveness to any other odorant tested
( p 
 .05 in all cases; Figure 4C).

Replicability

Olfactory generalization gradients are reasonably replicable
over time and between subjects. Cleland and Narla (2003) explic-
itly repeated a set of generalization trials at the beginning and end
of their study of odor concentration effects, demonstrating that
experience accumulated over the course of a comparable study
does not progressively affect odor generalization gradients. Fur-
thermore, the three generalization studies performed herein were
performed with three different cohorts of mice over an extended
period, yet their respective results under comparable conditions are
reasonably consistent (Figure 3, section symbols; also compare the
corresponding trajectories in Figure 4A–C). Specifically, mice

trained using the set of experimental parameters common to all
three studies (i.e., trained for �6 trials with odorants at 0.01 Pa and
rewarded with 100% sucrose pellets) responded to the CS for 14 �
4 seconds during testing, and to the dissimilar odorant for 6 � 1
seconds. Mean digging times in all test odorants substantially
exceeded the 200 to 300 milliseconds required for odor discrimi-
nation in mice (Abraham et al., 2004), indicating that the observed
differences in generalization gradients do not primarily reflect
changes in the detection or physical sampling of odorants.

Discussion

We here show that olfactory associative learning not only in-
creases the strength of conditioned responses to the odor CS, as
broadly predicted by theories of learning, but also exerts consistent
effects upon olfactory generalization gradients. Specifically, in-
creased learning about an odor CS results in progressively sharper
generalization gradients, such that the range of variance in odor
quality perceived as likely to share the learned contingency of the
CS (i.e., to predict the US) is correspondingly narrowed. This
sharpening effect was observed irrespective of the method used to
increase the rate or level of associative learning. However, beyond
this basic commonality, the three learning variables tested ap-
peared to effect qualitatively distinct transformations of olfactory
generalization gradients, though as they were tested in separate
experiments this cannot be statistically confirmed. Specifically, in
their respective experiments, increasing CS salience significantly
reduced responses to dissimilar odorants such as D, increasing the
number of conditioning trials significantly increased responses to
all odors tested including the arbitrarily dissimilar odorants D, and
increasing reward value did not affect the responses to D or to
other dissimilar odorants. In other words, whereas increasing
CS-US pairings appeared to evoke a degree of nonselective learn-
ing despite a bias favoring the CS, increasing reward value ap-
peared to only enhance learning with respect to a narrow gradient
of generalization surrounding the CS. If confirmed, these results
will require extension of contemporary theories of learning to
consider the effects of these determinants on the strengths and
shapes of conditioned stimulus representations.

Why should associative learning sharpen olfactory generaliza-
tion gradients? The underlying effect is unlikely to be sharpening
per se, but rather the gradual adaptation of the generalization
gradient to reflect the actual pattern of CS contingency as approx-
imated over a period of accumulated sensory experience. That is,
learning may serve to optimize the shapes of categorical odor
representations until their predictions of the meanings of novel
(but similar) odorants reflect reality (Rosenthal, Fusi, & Hochstein,
2001). In the present studies, for example, generalization gradients
would be predicted to sharpen until they approximated the actual
distribution of variance in CS representations evoked across re-
peated experimental trials—a quite narrow distribution, given that
the same monomolecular odorant stimulus was repeatedly used in
any given set of trials under controlled conditions. In contrast,
learning might broaden generalization gradients from their a priori
state if substantial variations in scent quality were all found to
predict the same food source or other consequence. This hypoth-
esis of course does not explain the qualitatively different forms of
sharpening or broadening that different determinants of learning
appear to exert on generalization gradients. The underlying prin-

Figure 3. Multiple determinants contribute to associative learning (A).
Effect of the number of CS-US pairings (3, 6, or 12 conditioning trials) on
associative learning, measured as digging times in response to presentation of
the odor CS. Mice receiving more training responded correspondingly more
strongly to presentation of the CS. Asterisks denote significant differences in
digging times ( p 	 .05). (B) Effect of CS salience (odor intensity) on
associative learning. Odorants presented at 100� greater concentration evoked
significantly greater learning in an otherwise identical conditioning paradigm.
Asterisks denote significant differences in digging times ( p 	 .05). (C) Effect
of US value (perceived reward quality) on associative learning. Otherwise
identical paradigms in which 100% sucrose reward pellets were used during
conditioning resulted in significantly greater learning than when 25% sucrose/
75% cellulose reward pellets were used. Asterisks denote significant differ-
ences in digging times ( p 	 .01). Section symbols depict the groups among the
different experimental cohorts that were conditioned using similar parameters
(see Replicability section within Results).
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ciple of progressively learning the distribution of CS quality vari-
ance as a basis for stimulus categorization has been directly
observed in human visual studies of categorical learning
(Rosenthal et al., 2001); it is also embedded in the error minimi-
zation principle of elemental learning models (McLaren & Mack-
intosh, 2000) and explicitly modeled in theories of concept learn-
ing and categorization (Nosofsky, 1986; Shepard, 1986; Stewart &
Brown, 2005). Elucidating these learning and classification phe-
nomena in the present olfactory generalization paradigm enables
extension of these psychometric analyses to incorporate their un-
derlying neurophysiological mechanisms.

The Physiology of Olfactory Generalization

The olfactory system exhibits singular advantages for the study
of stimulus generalization and other properties of perceptual learn-
ing. Among these, one of the most important is the emerging
capacity to map these cognitive processes onto the activity of
particular neuronal circuits such that physiological stimulus rep-
resentations and their neural transformations can be studied in
concert with their respective influences on sensory perception. A
number of innate features of the olfactory system support this
capacity. First, olfactory perceptual similarity shares a metric
space with the receptive fields of primary sensory neurons; there is
no need for computational transformations to achieve, for exam-
ple, positional invariance. This implies both that behaviorally
meaningful odor objects have consistent, potentially stationary
primary representations, and that overlap in these primary repre-
sentations corresponds to perceptual similarity in these objects.
Second, the axons of primary olfactory sensory neurons expressing
the same odorant receptor proteins, and hence exhibiting similar
receptive fields, converge together to form bundles of neuropil
(glomeruli) on the surface of the olfactory bulb (Mombaerts et al.,
1996), the activity of which can be collectively visualized using
optical imaging techniques (Leon & Johnson, 2003; Rubin & Katz,
1999). In principle, therefore, the entire primary olfactory repre-
sentation can be physiologically measured. Third, the cortical
architecture of the olfactory bulb is well-described, and its relative
morphological segregation from the rest of the telencephalon fa-
cilitates its study as a sensory signal processor. Indeed, recent
computational models of the bulbar neural network have proposed
mechanisms for the neural representation of odor similarity (Cle-
land, Johnson, Leon, & Linster, 2007; Cleland & Sethupathy,
2006) that have directly linked established cellular neuromodula-
tory effects within the olfactory bulb to changes in a nonrewarded

Figure 4. Generalization gradients are regulated by determinants of as-
sociative learning (A). Effect of the number of CS-US pairings. Mice
receiving larger numbers of conditioning trials exhibited progressively
stronger responses to all test odors, though the effect was greatest for the
CS itself, resulting in an overall sharpening of generalization gradients with
greater learning. That is, learning deriving from additional CS-US pairing
generalized broadly, including even very dissimilar odorants. Asterisks
denote significant differences between individual points ( p 	 .05). (B)
Effect of CS salience (odor intensity). Mice presented with higher-intensity
odor CSs during conditioning generalized less to similar odorants than did
mice conditioned with lower-intensity odorants. Increased CS salience
dramatically sharpened the generalization gradient, such that whereas
responsiveness to the CS was increased, responsiveness to similar and
dissimilar odorants was reduced. Asterisks denote significant differences
( p 	 .05); note that the gradients cross between the odorants CS and S1.
These results are based on a reanalysis of previously published data
(Cleland & Narla, 2003). (C) Effect of US reward value. Mice receiving
US reward pellets with higher perceived value during CS-US pairing (i.e.,
with a proportional sucrose content of 100% rather than 25%) generalized
less to similar odorants than did mice trained with the lesser reward.
Learning derived from superior reward value generalized very narrowly,
having a statistically significant effect only on responses to the CS itself.
Asterisks denote significant differences between individual points ( p 	
.05); ns: not significant.
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form of olfactory generalization (Mandairon et al., 2006). Similar
behavioral effects have been demonstrated in mouse models of
human dementia (Bath et al., 2008), indicating that a flattening of
olfactory generalization gradients may be a consequence of a
generally reduced learning capacity in relevant brain regions.

Higher-order olfactory representations in other parts of the brain
exhibit properties that may derive from the associative, adaptive
sensory processes described herein. In the piriform cortex, cross-
habituation studies reveal configural odor representations insensi-
tive to the elemental similarities that are evident in the more
peripheral representations of the same odorants within the olfac-
tory bulb (McNamara, Magidson, Linster, Wilson, & Cleland,
2008; Wilson, Kadohisa, & Fletcher, 2006). Further downstream,
neuronal activity in the orbitofrontal cortex reflects the expected
contingency and cross-modal associations of odor stimuli more
than it does odor quality per se (Rolls, 2001, 2005; van Duuren et
al., 2007). The construction of these increasingly configural, as-
sociative odor representations likely depends on layers of learning-
regulated sensory processing implemented as peripherally as the
first sensory synapse (Brennan & Keverne, 1997).

Conclusions

The construction of meaningful odor representations out of the
primary sensory sampling of the olfactory environment depends
strongly on learning, motivation, expectation, and other psycho-
logical factors as well as on the physical properties of sampled
stimuli. Whether to group together a given range of variance in
physical odor quality and categorize it as a single “odor,” or to
segregate this range into multiple distinct odors with potentially
different meanings, depends in large part on prior learning and the
motivations associated with the task at hand. For example, the
same set of similar odorants may be perceptually grouped together
in a nonrewarded cross-habituation task and yet be strongly dif-
ferentiated in a motivated discrimination task (Cleland et al., 2002;
Linster, Johnson, Morse, Yue, & Leon, 2002). The emerging
principle is that perceptually meaningful odors are not passively
detected, but rather that sensory input is continuously and dy-
namically modulated by a learned recognition of which patterns
are meaningful and which discriminations, however subtle, are
important.
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