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Classical lateral inhibition, which relies on spatially ordered neural representations of phys-
ical stimuli, cannot decorrelate sensory representations in which stimulus properties are
represented non-topographically. Recent theoretical and experimental studies indicate that
such a non-topographical representation of olfactory stimuli predominates in olfactory bulb,
thereby refuting the classical view that olfactory decorrelation is mediated by lateral inhi-
bition comparable to that in the retina. Questions persist, however, regarding how well
non-topographical decorrelation models can replicate the inhibitory “surround” that has
been observed experimentally (with respect to odor feature-similarity) in olfactory bulb prin-
cipal neurons, analogous to the spatial inhibitory surround generated by lateral inhibition
in retina. Using two contrasting scenarios of stimulus representation – one “retinotopi-
cally” organized and one in which receptive fields are unpredictably distributed as they
are in olfactory bulb – we here show that intracolumnar inhibitory interactions between
local interneurons and principal neurons successfully decorrelate similar sensory repre-
sentations irrespective of the scenario of representation. In contrast, lateral inhibitory
interactions between these same neurons in neighboring columns are only able to effec-
tively decorrelate topographically organized representations. While anatomical substrates
superficially consistent with both types of inhibition exist in olfactory bulb, of the two only
local intraglomerular inhibition suffices to mediate olfactory decorrelation.

Keywords: olfactory bulb, decorrelation, non-topographical contrast enhancement, inhibition, computa-

tional model

INTRODUCTION
Complex sensory stimuli are represented by the concerted activa-
tion of populations of sensory neurons, each sensitive to a stimulus
feature or group of features that constitute that neuron’s receptive
field. Highly similar stimuli consequently have correspondingly
overlapping sensory representations in the brain – particularly in
relatively peripheral sensory regions in which neuronal receptive
fields are reasonably straightforward to measure. Pattern decorre-
lation is a common early stage transformation performed on the
neural representations of sensory stimuli in multiple modalities
that serves to reduce the overlap of similar sensory represen-
tations in a regulated manner, e.g., to improve the perceptual
differentiation of physically similar stimuli (Joublin et al., 1996;
Cook and McReynolds, 1998b; Wiemer et al., 2000; Mandairon
et al., 2006; Mandairon and Linster, 2009). In particular, the on-
center/inhibitory surround (“Mexican-hat”) transformation, also
referred to as contrast enhancement, is a powerful form of pattern
decorrelation characterized by a prominent inhibitory band in
which relatively weakly activated neurons in the shoulder regions
of a representation are actively and selectively inhibited below
baseline levels (Figures 1Ai,ii). On-center/inhibitory surround
response profiles have been observed in the in the early visual

and auditory systems as well as in the olfactory system – although
in the latter the surround is mapped with respect to a metric of
odorant feature-similarity (Yokoi et al., 1995; Cleland, 2010).

In many primary and secondary sensory structures, neural
responses form physically ordered representations of sensory stim-
ulus attributes, mapping them in the brain with respect to the
similarity of their features such that neurons with similar recep-
tive fields are located correspondingly closely to one another. That
is, physical proximity becomes a proxy for receptive field sim-
ilarity. The neural mechanisms mediating similarity-dependent
computations in these sensory modalities consequently are able
to rely on short-range, lateral interconnections between neighbor-
ing neurons in order to preferentially couple neurons with the
most highly overlapping receptive fields. Specifically, retinotopic,
tonotopic, and somatosensory decorrelation can be mediated by
nearest-neighbor lateral inhibitory interactions (von Bekesy, 1967;
Yang et al., 1992; Suga et al., 1997; Cook and McReynolds, 1998a;
Lavallee and Deschenes, 2004); each of these systems utilizes
the resulting mutual inhibition among neurons with overlap-
ping receptive fields to accentuate the differences between similar
representations. Second-order principal neurons in the olfactory
system, known as mitral cells, also exhibit on-center/inhibitory
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Cleland and Linster Decorrelation of odor representations

FIGURE 1 | Comparison of decorrelation models. (A) Schematic
comparison of on-center/inhibitory surround and non-specific decorrelation
functions. (i) Two overlapping input representations (α and β) depicted in one
dimension. (ii) Canonical on-center/inhibitory-surround decorrelation
generates an explicit inhibitory surround in which the shoulders of the input
representation are inhibited below baseline, yielding a sharp reduction in
overlap among similar representations. This computation is performed by
lateral inhibition in the retina and cochlear nucleus, and by the
non-topographical model of olfactory receptive field decorrelation. (iii) A
lesser degree of decorrelation can be obtained by broad, non-specific
inhibition, including lateral inhibition with an unstructured surround, although
this imposes a general reduction in sensitivity across the entire
representation. This is the effect of most lateral inhibitory models studied to
date in the olfactory bulb; notably, it does not generate the inhibitory surround
observed by Yokoi et al. (1995). Whereas both computations can effect a
measurable decorrelation in principle, the two transformations differ both
qualitatively and in terms of quantitative efficacy. Figure adapted from Cleland
(2010). (B) Lateral inhibition. (i) Left panel. Tuning curves for two mitral cells
(Mi 1 and Mi 2) with overlapping receptive fields for odorants, prior to the
effects of lateral inhibition in a topographical representation scenario. Both
neurons are excited by the odorant presented, although Mi 1 is more strongly
activated than Mi 2. Right panel. The same two mitral cell tuning curves after
the inclusion of lateral inhibition. Now, whereas Mi 1 is still excited by the
odorant presented, Mi 2 is inhibited. The abscissa is a hypothetical axis of
odor quality. (ii) Schematic representation of neuronal responses to a given
odorant in the absence of lateral inhibitory PG axonal projections in a
topographical representation scenario. The odorant presented activates the
lightly shaded population of OSNs somewhat more strongly than it does the
more darkly shaded population of OSNs, evoking a higher spike rate in the

OSN population projecting to the glomerulus on the right. In the absence of
inhibition, mitral cells (Mi) are activated in direct proportion to their constituent
OSN populations. (iii) Schematic representation of the same two glomeruli
and the same odorant presented as in (Bii), with the addition of PG cells that
also are activated in direct proportion to their OSN population and deliver
lateral inhibition onto mitral cells in the other glomerulus. The mitral cell that is
more weakly responsive to the odorant presented [corresponding to the
dotted vertical line in (Bi)] is silenced due to this lateral inhibitory input from
the PG cell associated with the more strongly activated parent glomerulus.
(C) Intraglomerular inhibition. (i) Tuning curves for mitral and periglomerular
cells mapped onto an abscissa of odor ligand-receptor potency (potency
incorporates both ligand-receptor affinity and efficacy terms; for discussion of
the effects of odor concentration on this relationship, see Cleland et al., 2007).
Both mitral and periglomerular cells are excited by the odorant presented via
the activity of their associated OSN populations (Miin, PGin); though PG cells
are more sensitive to this common input (Gire and Schoppa, 2009). Inhibition
of mitral cells by PG cells alters the mitral cell tuning curve (Miout), generating
a Mexican-hat inhibitory surround in a metric space defined by odor quality.
Figure adapted from Cleland and Sethupathy, 2006). (ii) Schematic
representation of neuronal responses to a given odorant in the presence of
intraglomerular PG-mediated inhibition of mitral cells. The odorant presented
is the same as in (B), exhibiting a stronger potency for the receptors
expressed by the OSN population projecting to the glomerulus on the right
[the two potencies correspond to those depicted by vertical lines in (Ci)].
Periglomerular cells are activated in direct proportion to their constituent OSN
populations, as in the lateral inhibitory case, whereas mitral cells receive both
afferent excitation and intraglomerular inhibition, thereby exhibiting sharpened
receptive fields with inhibitory surrounds. The mitral cell that is more weakly
responsive to the odorant presented is silenced [compare to (Biii)].
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surround response properties that clearly reflect decorrelation
among structurally and perceptually similar odor stimuli (Yokoi
et al., 1995). However, in the olfactory bulb – the layered telen-
cephalic structure within which mitral cells are embedded – it
recently has been demonstrated that no comparably orderly topo-
graphical mapping of odor stimulus similarities exists (Soucy et al.,
2009), a result previously predicted on theoretical grounds (Cle-
land and Sethupathy, 2006; Cleland et al., 2007). Consequently, a
nearest-neighbor lateral inhibition mechanism is fundamentally
unable to compute the observed decorrelations among stimuli
of similar quality in the olfactory bulb as it does in some other
sensory structures. In contrast, purely local computations, utiliz-
ing only established and well-described synaptic interactions in
the olfactory bulb glomerular layer, are able to perform olfactory
stimulus decorrelation in a manner that is completely independent
of the topographical mapping of odorant features and hence is
able to perform the necessary transformations irrespective of any
basis for the physical mapping of the odor representation (Cle-
land and Sethupathy, 2006; Cleland et al., 2007; Cleland, 2010).
We here compare these two on-center/inhibitory-surround mech-
anisms directly, using otherwise-identical computational models,
in order to demonstrate (1) their equivalence when presented
with topographically organized, low-dimensional inputs and (2)
the capacity of the non-topographical contrast enhancement
(NTCE) algorithm to perform this same computation on high-
dimensional, distributed, or disorganized representations within
which topographical lateral inhibition fails.

Additional models of olfactory decorrelation also have been
proposed (see Discussion). Most of these reduce to a form of
non-specific decorrelation that does not map effectively onto
odorant feature-similarity; these lack an inhibitory surround and
instead achieve a measure of decorrelation simply by reducing gen-
eral sensitivity (Figure 1Aiii). The exceptions are learning-based
models that construct experience-dependent maps of inhibitory
efficacy by virtue of statistical learning (e.g., Cecchi et al., 2001).
These models are based on feature-covariance rather than feature-
similarity per se, and are likely to follow, rather than replace, early
stage mechanisms based on features of physical similarity (see
Discussion). The present analysis is restricted to the mechanisms
underlying the initial decorrelation of representations based upon
their physical similarities.

We constructed full-scale neural circuit models of the olfactory
bulb glomerular layer and implemented two alternative mecha-
nisms proposed to mediate decorrelation in the olfactory bulb
glomerular layer. The first (lateral inhibition) relies on nearest-
neighbor lateral inhibitory projections that are excited by afferent
input and inhibit olfactory bulb principal neurons (mitral cells)
in their immediate neighborhood (Pinching and Powell, 1971,
1972; Linster and Gervais, 1996; Linster and Hasselmo, 1997;
Figure 1B). This lateral inhibitory mechanism resembles that of
the retina and cochlear nucleus, and is able to perform contrast
enhancement in models of the olfactory bulb (or insect anten-
nal lobe) provided that olfactory receptive field similarities are
systematically ordered in a one- or two-dimensional map (Lin-
ster and Hasselmo, 1997; Linster and Cleland, 2004). The second
mechanism (intraglomerular inhibition) relies on local inhibitory
interactions between periglomerular cells and mitral cell dendrites

within single glomeruli, via a location-independent algorithm
(Cleland and Sethupathy, 2006; Cleland et al., 2007; Figure 1C).
We then tested each of these mechanisms against two scenarios of
bulbar odor representation: one in which physically neighboring
glomeruli were activated by receptors responding to correspond-
ingly similar odorant features (i.e., a retina-like topographical
representation), and one in which the same set of glomerular
responses was randomly disbursed throughout the glomerular
layer (a distributed representation, as has been demonstrated in
olfactory bulb; Soucy et al., 2009). Our simulations showed that in
the case of topographical odor representations, both mechanisms
perform comparably well and generate similar decorrelated output
patterns, whereas only the intraglomerular inhibition mechanism
can successfully decorrelate distributed odor representations. We
propose that the intraglomerular inhibition mechanism is the
initial mediator of stimulus decorrelation within the olfactory
bulb in that it relies upon an experimentally established synaptic
architecture in the glomerular layer, is independent of the phys-
ical mapping of odor representations, and in particular does not
depend on a non-existent retina-like topographical representation
of feature similarity.

MATERIALS AND METHODS
GLOMERULAR NETWORK ARCHITECTURE
Primary olfactory sensory neurons (OSNs) in the nasal epithe-
lium project axons into the olfactory bulb. Canonically, the axons
of OSN populations that express the same type of odorant receptor
converge to form glomeruli on the surface of the olfactory bulb
such that the odor response profile of each glomerulus directly
reflects the receptive field of its constituent OSNs. Within these
glomeruli, the axonal arbors of the convergent OSN populations
synaptically excite the dendritic arbors of second-order princi-
pal neurons (e.g., mitral cells) and inhibitory interneurons (e.g.,
periglomerular cells). Periglomerular cells in turn inhibit the pri-
mary dendrites of mitral cells within the same glomerulus, and
some also project axons to neighboring glomeruli.

SIMULATION PARAMETERS
A total of 1024 glomeruli with associated OSNs, PG cells, and
mitral cells were simulated, arranged in a two-dimensional 32 × 32
torus (i.e., the edges of the map wrap around independently).
In comparison, the olfactory bulbs of rats and mice contain
1000–1200 chemotopically distinct glomeruli corresponding to
the 1000–1200 different olfactory receptors expressed by these ani-
mals (as most glomeruli are duplicated in the medial and lateral
OB, the actual counts of anatomical glomeruli in each olfactory
bulb are roughly twice this number). Synaptic connections and
parameter values are presented in Table 1. The pattern of projec-
tions from PG cells to mitral cells in the model was structured
to produce either lateral (interglomerular) inhibition with projec-
tions extending up to five glomerular diameters (Figure 1Biii) or
local (intraglomerular) inhibition in which lateral projections were
omitted entirely (Figure 1Cii). These constituted the only variable
parameters in the present simulations.

For simplicity, concentration was not substantially varied, so
that the bulbar circuitry mediating intensity compression and par-
tial normalization observed in mitral cell activity profiles could be
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Table 1 | Computational model parameters

Olfactory sensory

neurons (OSN)

τ = 2.0 ms; θmin = 0.0; θmax = 1.0

Periglomerular

cells (PG)

τ = 2.0 ms; θmin = 0.0; θmax = 2.0

Mitral cells (Mi) τ = 10.0 ms; θmin = 0.0; θmax = 6.0

Afferent, OSN

to PG

wOSN–PG = 0.014; EN,OSN–PG = +70; τ1 = 1.0; τ2 = 2.0

Afferent, OSN to Mi wOSN–Mi = 0.014; EN,OSN–Mi = +70; τ1 = 1.0; τ2 = 2.0

Intraglomerular

inhibitory, PG to Mi

wPG–Mi = 0.01; EN,PG–Mi = −5; τ1 = 4.0; τ2 = 8.0

Interglomerular

inhibitory, PG to Mi

wPG–Mi = 0.004; EN,PG–Mi = −5; τ1 = 4.0; τ2 = 8.0;

The instantaneous spiking probability for each cell type is a continuous, bounded

function of the membrane potential with a threshold θmin and a saturation value

θmax. Omega values (wij) designate synaptic weights, and values of EN,ij designate

synaptic reversal potentials. τ designates the membrane time constant, and τ1

and τ2 the synaptic time constants. All model parameters were chosen randomly

±10% around the above mean values for each simulation.

omitted from the simulations. Both intraglomerular and lateral
inhibitory mechanisms function only within limited ranges of
afferent input intensity; compression of the range of OSN input
intensities is likely regulated by presynaptic inhibition of OSN
terminals (Pirez and Wachowiak, 2008; Cleland et al., 2012). Intra-
glomerular inhibition additionally requires a normalizing mech-
anism to establish competitive interactions among olfactory bulb
columns; the existence of such competitive normalization is indi-
cated by the non-monotonic response levels observed in mitral
cells’ responses to increasing odorant concentrations, and has been
theoretically attributed to a bulbar lateral excitatory network com-
prising external tufted (ET) cells and superficial short-axon cells
(Cleland et al., 2007; Cleland, 2010). Subsequent computations
performed by deep bulbar circuitry (e.g., mitral cell interactions
with granule cells; see Discussion), secondary cortices such as pir-
iform cortex, and ascending feedback projections to the olfactory
bulb also were omitted.

Simulated odorants each activated a characteristic subset of
OSNs in the model. Specifically, each model OSN had a normally
distributed receptive field (with variable SDs and amplitudes; see
Table 1) with ligand-receptor potency drawn randomly from this
distribution for each odorant. Using a topographical representa-
tion, OSNs projecting to neighboring glomeruli expressed similar
and overlapping receptive fields (Figures 1Bi and 2A), such that
the activation amplitude of each OSN was chosen as a function
of its glomerular distance from the OSN centered on that odor-
ant with the SD chosen randomly from a uniform distribution
ranging from σ = 1.0 to 5.0 glomerular diameters. In the case
of distributed representations, the same statistical distribution
of response profiles was randomly distributed across the 32 × 32
array (Figure 2B). The synaptic interactions between PG cells and
mitral cells were either local (intraglomerular), such that each PG
cell inhibited the mitral cell associated with the same glomerulus
and receiving the same OSN input (Figure 1C), or lateral, such
that each PG cell inhibited mitral cells associated with neighbor-
ing glomeruli located within a radius of five glomerular diameters

surrounding the PG cell’s glomerulus (Figure 1B). This radius was
chosen to match the lengths of PG cell axons measured in the rat
olfactory bulb (Pinching and Powell, 1972).

MODEL NEURON EQUATIONS
All neurons were represented as single compartments except
for mitral cells, which were represented by four compartments
(glomerular tuft, primary dendrite, secondary dendrite, and
soma). Each compartment was characterized by a membrane
time constant that can be regarded as the mean product of the
membrane capacitance and the membrane input resistance. Con-
sequently, the evolution of the membrane voltage over time is
described by a first order differential equation:

τ
dv(t )

dt
+ v(t ) = Iext(t ),

where τ is the charging time constant of the neuron and Iext(t ) is
the total input at time t. The input from a particular presynaptic
neuron at time t is computed as a function of the synaptic strength
w ij, the conductance change g(t ) due to a presynaptic event xj at
time tj (either a unitary event representing an action potential or
an analog value in case of a non-spiking neuron), and the differ-
ence between the Nernst potential EN,ij of the associated channel
type and the current membrane potential vi(t ) of the postsynaptic
neuron:

Ii,ext(t ) =
∑

j

wij

∑

t j<t

g
(
t − tj

) [
EN,ij − vi (t )

]
.

The time course of g(t ) is described by a double exponential
function:

g(t − tj) = gmax
τ1τ2

τ1 − τ2
(e−(t−tj)/τ1 − e−(t−tj)/τ2)

Mitral cell somatic compartments produced discrete spikes of
unit amplitude for output, computed according to the instanta-
neous spiking probability, a continuous, bounded function of the
membrane potential with a threshold θmin and a saturation value
θmax. (For a large number of neurons this translates to average
spike rates being a quasi-linear function of the membrane poten-
tial). The continuous outputs of all other neurons were calculated
from the same function. When networks were built, all parameters
were chosen randomly ±10% around the mean values indicated
in Table 1 to ensure that the results were not based solely on a
specific combination of parameters.

DECORRELATION CALCULATIONS
To calculate the overlap between representations and thereby
measure the effectiveness of pattern decorrelation, 60 sim-
ulations, each using a new pair of randomly determined
odors, were run for each of the four conditions (topographi-
cal/lateral, topographical/intraglomerular, distributed/lateral, dis-
tributed/intraglomerular). Each odorant was represented as a
1024-element activity vector in which each element represented
the activity at one glomerulus; specifically, the average output
activity of the corresponding OSN or mitral cell over the course of
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FIGURE 2 | Simulations of odor-evoked activity and the efficacy of

decorrelation mechanisms. (A) Response of a 32 × 32 array of glomeruli
to presentation of a model odorant, prior to the application of inhibition
(corresponds to Figure 1Bii, or to Miin in Figure 1Ci). The locations of
activated glomeruli were grouped into two clusters according to their
levels of activation in order to replicate a retina-like topology of similarity
(topographical representation; the lower right and lower left sub-clusters
are contiguous because the map wraps around). (B) The same response
profile as in (A), except that the locations of activated glomeruli were
distributed randomly across the 32 × 32 matrix (distributed
representation). Note that the deep red-colored glomeruli are the most
strongly activated in both representations. (C) Response of the 32 × 32
array of mitral cells in the topographical representation scenario after the
effects of lateral inhibition are incorporated. The mitral cell activation
profile is sharper and narrower at each of the two clusters, such that only

the most strongly activated mitral cells remain active. (D) Response of the
32 × 32 array of mitral cells in the distributed representation scenario after
the effects of lateral inhibition are incorporated. The mitral cell activation
profile is broad and disorganized, with an unclear relationship to the
pre-inhibition representation. (E) Response of the 32 × 32 array of mitral
cells in the topographical representation scenario after the effects of
intraglomerular local inhibition are incorporated. The mitral cell activation
profile is sharper and narrower at each of the two clusters, such that only
the most strongly activated mitral cells remain active – replicating the
effect of lateral inhibition in this scenario. (F) Response of the 32 × 32
array of mitral cells in the distributed representation scenario after the
effects of intraglomerular local inhibition are incorporated. The mitral cell
activation profile is sharper and narrower, such that only the most strongly
activated mitral cells remain active. (C,E,F) depict effective decorrelation
of the input representations.

a 200-ms stimulation. The overlaps between the representations
of each odor stimulus pair at both the input level (OSN activation)
and the output level (mitral cell activation) were calculated as the
normalized dot product between the corresponding 1024-element
activity vectors O1 and O2:

OverlapO1−O2 =

N∑
i=1

o1io2i

‖O1‖ ‖O2‖
where o1i, o2i are the elements of the activity vectors O1 and O2
(respectively) and ||O1||, ||O2|| are the norms of vectors O1 and
O2. To quantify the degree of decorrelation produced by each of
the four conditions, a decorrelation index was calculated for each
odor pair as follows:

DecorrelationO1−O2 = 1 − mitral-overlapO1−O2

OSN-overlapO1−O2

where mitral-overlap and OSN-overlap are the overlaps between
each odor stimulus pair at the output and input levels, respec-
tively. For each of the four conditions, the 60 decorrelation indices
then were averaged; the average then was subtracted from 1

and multiplied by 100 for reporting decorrelation under each
condition as a percentage reduction in overlap.

RESULTS
We compared the respective capabilities of the lateral inhibition
and intraglomerular inhibition mechanisms to decorrelate odor
representations in the olfactory bulb glomerular layer based on two
possible scenarios of glomerular organization. The first scenario,
topographical representation, resembles the retina in that odor rep-
resentations are fully ordered in a two-dimensional framework
such that the physical proximity of glomeruli is predictive of
the similarity of their response profiles (i.e., the overlap in their
receptive fields). In the second, contrasting scenario of distributed
representation, the odor response profiles of individual glomeruli
are unrelated to their physical proximity, as observed in olfactory
bulb (Soucy et al., 2009). Aside from the physical positioning of
glomeruli, the distribution of glomerular responses was identical
in both scenarios.

LATERAL INHIBITION MODEL
In the case of lateral inhibition, PG cells in the model receive
afferent sensory input from primary OSNs within the single
(parent) glomerulus to which that population of OSNs projects.
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PG cell axons projecting to neighboring glomeruli inhibit mitral
cells therein that are activated by different populations of OSNs
(Figure 1B). In the topographical representation scenario, PG cells
would thereby inhibit mitral cells with highly similar receptive
fields to those of their parent glomerulus, i.e., exhibiting activa-
tion curves that are adjacent or overlapping on an axis (or plane)
of stimulus variation. As a result, all mitral cells are inhibited by a
subset of the odorant features that activate their parent glomeru-
lus; these features constitute the inhibitory surround of these cells’
receptive fields (Figure 1Bi). Importantly, while in the topograph-
ical representation scenario this inhibitory-surround correlates
with the spatial localization of glomeruli, it is the surround in
odor feature-similarity space (Yokoi et al., 1995) that is actually
relevant in the olfactory modality.

Figures 1Bii,iii depict a schematic representation of neuronal
responses to a given odorant in the absence (Figure 1Bii) and
presence (Figure 1Biii) of lateral inhibitory PG axonal projections
in a topographical representation scenario. The mitral cell that is
more weakly responsive to the odorant presented (vertical lines in
Figure 1Bi) is silenced due to this lateral inhibitory input from
the PG cell associated with the more strongly activated parent
glomerulus. Consequently, the number of mitral cells activated
by a given odorant stimulus is reduced, and the overlap between
the neural representations of similar stimuli is reduced; i.e., the
representations are decorrelated. In contrast, in the distributed
representation scenario, the same distribution of lateral inhibitory
PG projections would inhibit neighboring mitral cells exhibiting
receptive fields that may be similar, relatively dissimilar, or entirely
unrelated to those of the parent glomerulus. The pattern of lat-
eral inhibition therefore is essentially random with respect to odor
feature-similarity space, and hence fails to decorrelate odor rep-
resentations except in the trivial sense that is achievable through
uniform or disorganized inhibition (Figure 1Aiii).

INTRAGLOMERULAR INHIBITION MODEL
In the intraglomerular inhibition model, in contrast, PG cells
only inhibit mitral cells that are associated with the same par-
ent glomerulus; hence, the physical locations of glomeruli are
irrelevant. Both mitral cells and PG cells are excited by afferent
OSN activity in a manner identical to the lateral inhibition model.
Because PG cells are intrinsically more responsive to afferent input
than are their coglomerular mitral cells (Gire and Schoppa, 2009) –
presumably owing to their exceptionally high input resistance and
the colocalization of OSN inputs and voltage-dependent GABA
release mechanisms within the same dendritic gemmules – mitral
cells begin to receive GABAergic shunt inhibition from PG cells
at odor ligand-receptor potencies that are weaker than the poten-
cies at which they will first receive sufficient direct excitation by
OSNs to approach spike threshold (Cleland and Sethupathy, 2006;
Figure 1Ci). Consequently, mitral cells are inhibited below base-
line by a subset of the odorant features that activate their parent
glomerulus – specifically, those features for which the potency
of the odorant ligand for its OSN receptors is modest. These
features constitute the inhibitory surround of the mitral cells’
receptive fields. Importantly, this inhibitory surround is intrin-
sically based in the odor feature-similarity space that is relevant
in the olfactory modality (Yokoi et al., 1995), irrespective of the

spatial locations of glomeruli. Notably, when presented with a
two-dimensional topographically organized representation that
can be meaningfully decorrelated by lateral inhibition, both the
lateral and the intraglomerular inhibition mechanisms produce
similar on-center/inhibitory-surround transformations (compare
bottom traces in Figures 1Biii,1Cii).

COMPARISON OF LATERAL AND INTRAGLOMERULAR INHIBITION
We then simulated the transformations effected by both mecha-
nisms of decorrelation acting on both scenarios of odor represen-
tation (Figure 2). Specifically, we simulated 1024 OSN populations
projecting to the same number of glomeruli arranged in a 32 × 32
array. Odor stimuli were modeled as distributions of odor ligand-
receptor potencies such that a substantial minority of OSNs was
activated to differing degrees by model odor stimulation. This dis-
tribution of potencies, and hence of glomerular response profiles,
was kept constant in all simulations. However, in the topographi-
cal representation scenario, we arranged the activated glomeruli
in spatially localized clusters, with the most strongly activated
glomeruli in the centers of these clusters, simulating a two-
dimensional bulbar chemotopy (Figure 2A). In contrast, in the
distributed representation scenario, the activated glomeruli were
positioned randomly (Figure 2B).

The activity of model mitral cells associated with each of
these glomeruli was recorded and mapped into a correspond-
ing 32 × 32 array. In the absence of either form of inhibition,
mitral cell activity patterns corresponded exactly to glomerular
input activity patterns (Figures 2A,B). The addition of lateral
or intraglomerular inhibition, however, transformed the odor
representations in characteristic ways. Specifically, lateral inhibi-
tion successfully decorrelated topographical odor representations
(Figure 2C), reducing the population of activated mitral cells to
those that initially were most strongly activated (and therefore
centrally located within clusters of activated glomeruli). How-
ever, lateral inhibition failed entirely to decorrelate distributed
representations (Figure 2D). In contrast, the intraglomerular inhi-
bition algorithm decorrelated both topographical and distributed
representations successfully (Figures 2E,F); in both cases mitral
cell representations were reduced to those associated with the
most strongly activated glomeruli, irrespective of their spatial
locations. Indeed, in the topographical representation case, the
two mechanisms produced essentially the same result (compare
Figures 2C,E).

To quantify the efficacy of decorrelation between the repre-
sentations of similar odorants that could be achieved by each
mechanism, we ran 60 simulations for each pairing of mech-
anism and representation (240 simulations total) in which the
patterns of odor stimulation across the 1024 glomeruli were gen-
erated randomly for a pair of simulated odorants. For the odor
pair in each such simulation, we calculated the overlap between
the representations at the OSN/glomerular input level (i.e., before
the effects of inhibition) as well as their overlap at the mitral cell
level (after inhibition) by calculating the normalized dot prod-
uct between the 1024-dimensional vectors spanned by the average
output activities of each OSN/glomerulus or mitral cell during
the course of a 200-ms odor presentation (see Methods). We then
plotted the pairwise mitral cell overlaps against the corresponding
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FIGURE 3 | Quantification of the efficacy of decorrelation mechanisms

on different representation scenarios. (A) Efficacy of lateral and
intraglomerular decorrelation mechanisms on topographical
representations. Sixty simulations for each mechanism were run using
randomized model odorant pairs with differing degrees of similarity. The
overlap between each of these paired odorants prior to the application of
inhibition (corresponding to Figures 2A,B) was then plotted against their
overlap following lateral or intraglomerular inhibition (corresponding to
Figures 2C,E, respectively). Points lying substantially below the diagonal
signify effective decorrelation of the representations of those odorant pairs;
points lying along the abscissa signify representations decorrelated to the
extent that they no longer overlap at all. Both lateral and intraglomerular
inhibition mechanisms effectively decorrelated topographical
representations. (B) Efficacy of lateral and intraglomerular decorrelation
mechanisms on distributed representations. Sixty simulations for each
mechanism were run using randomized model odorant pairs with differing
degrees of similarity. The overlap between each of these paired odorants
prior to the application of inhibition (corresponding to Figures 2A,B) was

(Continued)

FIGURE 3 | Continued

then plotted against their overlap following lateral or intraglomerular
inhibition (corresponding to Figures 2D,F, respectively). Points lying
substantially below the diagonal signify effective decorrelation of the
representations of those odorant pairs; points lying along the diagonal
signify no decorrelation, whereas points above the diagonal indicate
increased overlap (confusion) among representations. Only intraglomerular
inhibition mechanisms effectively decorrelated distributed representations.
(C) Decorrelation index of the proportional reduction in overlap between
input and output representations in all four mechanism/representation
cases. Both lateral and intraglomerular inhibitory mechanisms decorrelated
topographical representations by up to 90%; however, only intraglomerular
inhibition successfully decorrelated similar distributed representations to
this degree. Lateral inhibition was not an effective algorithm to decorrelate
distributed representations, although even this disorganized inhibition
produced a modest net decorrelation simply by silencing some neurons
that would otherwise be active.

pairwise OSN overlaps (Figure 3; 1200 pairwise comparisons).
In these plots, data points that lie along the diagonal indicate
that no decorrelation between odor pairs has been achieved; i.e.,
the overlap at system output is the same as the overlap at sys-
tem input). Data points that lie beneath the diagonal (dotted line)
indicate decorrelation whereas values above the diagonal indicate
the opposite of decorrelation (increased overlap between similar
representations).

These simulations demonstrate that both lateral and intra-
glomerular inhibitory interactions can decorrelate topographical
representations, reducing the overlap of the output (mitral cell
activity profiles) as compared with the input (Figure 3A). How-
ever, only intraglomerular inhibition successfully decorrelated dis-
tributed representations; lateral inhibition, on average, had minor
and inconsistent effects on the correlations of odor representations
(Figures 2D and 3B; see below). Finally, we calculated a decor-
relation index (the proportional reduction in overlap between
input and output representations in all four cases; Figure 3C).
Whereas both lateral and intraglomerular inhibitory mechanisms
reduced the overlap of similar topographical representations by
up to 90%, only intraglomerular inhibition successfully decor-
related similar distributed representations to this degree. Lateral
inhibition was not an effective algorithm to decorrelate distributed
representations.

The roughly 35% decorrelation achieved by lateral inhibition
operating on distributed representations is a reasonable estimate
of the degree of trivial or non-specific decorrelation that can be
achieved simply by thresholding, or reducing the overall activ-
ity in a representation via uniform or disorganized inhibition,
as has been demonstrated in other models of olfactory bulb
decorrelation (e.g., Wiechert et al., 2010; see Discussion). While
this may contribute to net decorrelation under some circum-
stances, it is markedly inferior to the specific, targeted,Mexican-hat
decorrelations performed by intraglomerular local inhibition, or
by lateral inhibition within appropriately topographical repre-
sentations (Cleland, 2010). For example, thresholding necessar-
ily reduces sensitivity in proportion to decorrelation, whereas
on-center/inhibitory-surround mechanisms such as those stud-
ied herein can separately regulate the sensitivity and sharpness
of receptive fields; e.g., nicotinic cholinergic neuromodulation
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both sharpens mitral cell receptive fields and enhances their
sensitivity via concerted effects in mitral and periglomerular cells
(Mandairon et al., 2006).

DISCUSSION
The circuitry of the olfactory bulb clearly serves, among other
functions, to decorrelate the representations of odors with respect
to their structural and perceptual similarities, as observed in the
on-center/inhibitory-surround (“Mexican-hat”) tuning curves of
mitral cells presented with homologous series of sequentially
similar odorants (Yokoi et al., 1995). Whereas different network
mechanisms have been proposed to mediate this decorrelation, we
demonstrate that the “classical model” of lateral inhibition cannot
successfully decorrelate representations in which receptive field
overlap does not reliably correlate with proximity, as is the case
in the olfactory bulb. In contrast, the intraglomerular inhibition
mechanism – also referred to as NTCE (Cleland and Sethupathy,
2006) – successfully decorrelates olfactory bulb representations
irrespective of the physical distribution of activated glomeruli and
also explains the effects of nicotinic cholinergic neuromodulation
within the olfactory bulb glomerular layer (Mandairon et al.,
2006). This proximity-independent decorrelation algorithm also
may have application in other sensory networks in which the met-
ric space being represented is sufficiently high-dimensional so as
to require discontinuous representations in the brain, such as in
piriform cortex, or the orientation columns and color blobs of
area V1, or the interdigitating color, form, and depth stripes of V2
(Livingstone and Hubel, 1984; Hubel and Livingstone, 1987; Bon-
hoeffer and Grinvald, 1991; Roe and Ts’o, 1995). A particularly
interesting example is gustatory insular cortex; while the structure
of gustatory representations at this level remains unclear, the insu-
lar cortex lacks intercolumnar lateral inhibition (in direct contrast
to somatosensory barrel cortex), instead exhibiting an intracolum-
nar variant of the feedforward intraglomerular inhibition circuit
here described for the olfactory bulb (Sato et al., 2008). In general,
it should not be surprising that the computational architecture
of modality-selective cortical circuitry is adapted to the differ-
ent properties and statistics of sensory stimuli in the relevant
modalities.

INVARIANCE TO CONCENTRATION
The olfactory bulb incorporates several cell classes and circuit
elements that for clarity were excluded from the present simula-
tions. ET cells – or a subclass thereof – also receive direct afferent
input from convergent OSN populations. They are resonant in
the theta-band frequencies of respiration and involved in intra-
bulbar communication between homologous glomeruli (Hayar
et al., 2004; Liu and Shipley, 2008; Zhou and Belluscio, 2008).
Functionally, ET cells have been proposed to implement a global
feedback normalization circuit (along with superficial short-axon
cells) that maintains the mean activity level of mitral cells within
a restricted functional range and predicts behavioral results to
cross-concentration training (Cleland et al., 2007), although this is
unlikely to be their only function. The multiple mechanisms con-
tributing to olfactory concentration invariance have been recently
reviewed (Cleland et al., 2012).

OTHER BULBAR COMPUTATIONS
Deep interneurons such as granule cells and the heterogeneous
deep short-axon cells (Eyre et al., 2008, 2009) further shape the
interactions among mitral cells, although they can influence odor
stimulus processing only after activated mitral cells generate action
potentials. Granule cells in particular form a dense synaptic net-
work with mitral cells that comprises the external plexiform layer
(EPL) of the olfactory bulb; in this layer, mitral cells excite granule
cell dendrites and granule cells reciprocally inhibit the same mitral
cell (recurrent inhibition) as well as other mitral cells (lateral inhi-
bition). This lateral inhibitory network also has been proposed to
decorrelate mitral cell odor representations, both in the classical
topographical sense, which exhibits properties similar to the lateral
inhibitory mechanism presented herein (Figures 1B and 2C,D),
and in more contemporary incarnations that recognize the absence
of chemotopy in olfactory bulb (Linster et al., 2005; Arevian et al.,
2008; Wick et al., 2010; Wiechert et al., 2010).

One such model has demonstrated that random lateral
inhibitory projections will broadly reduce activity levels in a net-
work, contributing to a de facto, non-specific pattern decorrela-
tion by inhibiting all neurons such that fewer in total are active
(Wiechert et al., 2010); Figure 1Aiii; also compare to the ∼35%
decorrelation of the distributed, lateral bar in Figure 3C). Thresh-
olded neurons accentuate this non-specific decorrelation effect by
eliminating weakly activated neurons from the pattern; recurrent
connections also accentuate the effect by iteratively reducing the
inhibition of strongly activated neurons as the weaker neurons are
inhibited out of the pattern (Wick et al., 2010). The latter effect
is roughly comparable to the effects of intensity compression and
normalization operations within the glomerular layer (Wachowiak
et al., 2002; McGann et al., 2005; Cleland et al., 2007). However,
the concomitant loss of sensitivity renders this function a poor
decorrelator. A second model has proposed that lateral inhibi-
tion in this network is “activity-dependent” (Arevian et al., 2008),
though the observed effect can arise simply because lateral and
recurrent inhibitory effects on mitral cells summate (Egger et al.,
2003, 2005); i.e., active mitral cells evoke recurrent inhibition in
addition to whatever lateral inhibition they may receive, and there-
fore are inhibited more than are silent or less-active mitral cells.
To assess the impact of this phenomenon on correlated activity,
the authors measured decorrelation in a theoretical model based
upon non-spiking neurons in a functionally all-to-all inhibitory
network. The decorrelation observed in the model was substan-
tially due to non-specific activity reduction owing to uniformly
delivered inhibition as described above, but also exhibited an addi-
tional degree of decorrelation attributable to the selective addition
of inhibition to “moderately” active mitral cells (i.e., representing
recurrent inhibition). However, as this “moderate” range of mitral
cell activity in bulb slice experiments extended up to a spike rate
of 110 Hz (Figure 2 in Arevian et al., 2008), well above the normal
peak rates observed in mitral cells in vivo (Rinberg et al., 2006;
David et al., 2009; Chaudhury et al., 2010), it is unclear how much
this additional effect would contribute to pattern decorrelation
under normal conditions. In any event, granule cell-mediated lat-
eral inhibition is unlikely to be capable of silencing mitral cells
in the manner observed by Yokoi et al. (1995), as even massive
lateral inhibition delivered by direct stimulation of the granule
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cell layer did not fully silence mitral cell spiking (Arevian et al.,
2008), whereas periglomerular cells readily gate mitral cell activity
(Gire and Schoppa, 2009).

Third, a genuine on-center/inhibitory-surround decorrela-
tion profile can be obtained by a point-to-point map of lateral
inhibitory projections in which the inhibitory weights correlate
with receptive field similarities irrespective of physical location
(Linster et al., 2005). Indeed, the strengths of inhibitory influ-
ences within olfactory bulb are independent of proximity (Fantana
et al., 2008), though (in rats) they are also sparser than this
map-based model would require. The map-based algorithm is
computationally similar to lateral inhibition on a topographi-
cal representation (Figure 2C); however, it requires quantitative
foreknowledge of all receptive field similarities exhibited by all
pairs of glomeruli in order to weight the synapses correctly. More-
over, a given pattern of inhibitory weights of course will not be
robust to the inevitable changes in receptive field similarity profiles
that will occur whenever the animal moves into a new olfactory
environment.

LEARNING-BASED DECORRELATION IN THE EPL
Studies of cholinergic neuromodulation within olfactory bulb
make it clear that decorrelation among physically feature-similar
odorants as described herein is situated primarily within the
glomerular layer, and not the EPL. Specifically, blockade of nico-
tinic cholinergic receptors, which in olfactory bulb are found
only in the glomerular layer, substantially reduces discrimina-
tion among similar odorants and broadens the receptive fields
of mitral cells (Mandairon et al., 2006; Chaudhury et al., 2009),
whereas blockade of muscarinic cholinergic receptors, located in
the EPL, has a much smaller, possibly secondary effect. Instead,
it has been proposed that EPL-based computations contribute
to further, experience-dependent decorrelation based on olfac-
tory learning rather than on the physical similarities of odorant
ligands (Cecchi et al., 2001; Cleland, 2010; Cleland et al., 2012).
Indeed, intrinsic learning is embedded in bulbar circuit plasticity
and depends on the survival and differentiation of newly gener-
ated neurons in the deep layers of the olfactory bulb (Moreno
et al., 2009; Kermen et al., 2010), as previously predicted on
theoretical grounds (Cecchi et al., 2001). The progressive adap-
tation to real-world odor statistics that this learning theoretically
enables is likely to regulate the degree of correlation among

related representations as a categorization process, and thereby
to underlie the learning-dependence of olfactory generalization
gradients (Cleland et al., 2009, 2012; Mandairon and Linster,
2009).

CONCLUSION
Both the lateral and intraglomerular inhibitory circuit elements
described herein exist anatomically, whatever functions might be
ascribed to them. Both are susceptible to modulation by incoming
neuromodulatory fibers including cholinergic, serotonergic, and
noradrenergic fibers. In the lateral inhibition model, no specific
role is indicated for intraglomerular periglomerular cell inhibi-
tion of mitral cells, though it might be considered to contribute
to the compression of concentration-dependent responses so as
to expand the intensity tuning range (Cleland and Linster, 1999)
of mitral cells. In the intraglomerular inhibition model, in turn,
no specific role is mandated for periglomerular lateral axonal pro-
jections. One intriguing possibility is that they may contribute to
olfactory decorrelation in a specific and limited way, e.g., by offset-
ting the tendency of immediately neighboring glomeruli to exhibit
slightly more similar receptive fields to one another than would
be predicted by chance (Soucy et al., 2009). [These particular cor-
relations may arise owing to the recent divergence of paralogous
olfactory receptor genes or epigenetic regulatory factors (Kam-
bere and Lane, 2007), as such acquired differences appear to result
in allelic or non-allelic exclusion and consequent segregation into
distinct, adjacent or near-adjacent glomeruli (Serizawa et al., 2000;
Ishii et al., 2001; Nguyen et al., 2007)]. While these neighborhood
relationships are not sufficiently pervasive or general to underlie
the entire process of decorrelation or to support a hypothesis of
predictive bulbar chemotopy, the presence of anatomically local-
ized inhibitory projections in the immediate neighborhood could
facilitate decorrelation between the most reliably similar receptive
fields. Such flexible deployment of cortical computational mech-
anisms to solve practical problems in perception is likely to be the
rule, not the exception; a lateral inhibition architecture should be
considered a functional adaptation to the mechanistic properties
of specific modalities, and not a universal solution to all problems
of decorrelation.
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