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    Abstract     Beginning in 1994, Gilles Laurent and colleagues published a series of 
studies describing odor-induced fi eld potential oscillations in the locust olfactory sys-
tem. While fi eld oscillations had been described in the olfactory system previously—
beginning with the work of Lord Adrian in the 1940s and including the extensive 
studies performed by Walter Freeman and colleagues and the later work of Gelperin 
and colleagues—the Laurent laboratory’s work emerged at a time in which oscilla-
tions and spike synchronization in the visual system were attracting substantial 
attention, such that the emergence of this work triggered a renewed interest in the 
temporal properties of olfactory system activation and what it implied for the repre-
sentation of odor stimuli.  

        Introduction 

 Beginning in 1994, Gilles Laurent and colleagues published a series of studies 
describing odor-induced fi eld potential oscillations in the locust olfactory system 
(Laurent  1996a ,  b ; Laurent and Davidowitz  1994 ; Laurent and Naraghi  1994 ; 
Laurent et al.  1996 ). While fi eld oscillations had been described in the olfactory 
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system previously—beginning with the work of Lord Adrian in the 1940s (Adrian 
 1942 ,  1950 ,  1957 ) and including the extensive studies performed by Walter Freeman 
and colleagues (Di Prisco and Freeman  1985 ; Freeman  1978 ,  1979a ,  b ; Freeman 
and Schneider  1982 ; Freeman and Skarda  1985 ), and the later work of Gelperin and 
colleagues (Delaney et al.  1994 ; Gelperin et al.  1993 ; Gelperin and Tank  1990 ; 
Kleinfeld et al.  1994 )—the Laurent laboratory’s work emerged at a time in which 
oscillations and spike synchronization in the visual system were attracting substan-
tial attention (Engel et al.  1990 ; Gray et al.  1990 ,  1992 ), such that the emergence of 
this work triggered a renewed interest in the temporal properties of olfactory system 
activation and what it implied for the representation of odor stimuli. 

 The work of Freeman and colleagues showed that odor stimulation triggers odor- 
specifi c patterns of oscillatory activity in the olfactory bulb and piriform cortex of 
rabbits. These evoked patterns refl ected the identity (or quality) of the odorant and 
also were modulated by (1) the behavioral relevance of the odor to the animal, (2) 
the activity of neuromodulatory and feedback inputs arising from other brain areas, 
and (3) olfactory learning (Di Prisco and Freeman  1985 ; Freeman and Grajski  1987 ; 
Grajski and Freeman  1989 ; Gray et al.  1986 ,  1987 ). Interestingly, these results 
directly coincided with similar conclusions reached by other laboratories based on 
the odor-specifi c activation of characteristic populations of neurons; these odor- 
specifi c spatial patterns comprised  identity codes  in that odor quality was repre-
sented by the identities of activated neurons (Kauer  1988 ; Kauer et al.  1987 ; Lancet 
et al.  1982 ; Stewart et al.  1979 ). These identity codes also were found to be modu-
lated by (1) the behavioral relevance of the odor to the animal, (2) the activity of 
neuromodulatory inputs to olfactory regions, and (3) olfactory learning (Coopersmith 
et al.  1986 ; Coopersmith and Leon  1986 ; Salcedo et al.  2005 ; Sullivan and Leon 
 1986 ; Sullivan et al.  1988 ). While continued exploration of both the identity-code 
(“spatial”) and temporal approaches revealed substantial complexities and mecha-
nisms of regulation, no clear division of labor between the two became apparent. 

 Given that both spatial and temporal activity patterns in the olfactory system 
exhibit specifi city for odors as well as dependence on learning, experience, and 
behavioral state, researchers in the fi eld have sought to determine the relationship 
between the two as well as the relative importance of each. Recent years have seen 
a substantial increase in research focusing on the relationship between dynamics, 
spatial activity patterns, and odor perception. A parallel line of research, mostly 
theoretical, has emphasized study of the cellular and network mechanisms underly-
ing fi eld oscillations in the olfactory system. We here review the function and mech-
anisms of the olfactory bulb as it is understood today, emphasizing both spatial and 
dynamical odor representations and the behavioral evidence pertaining to each; for 
reasons of space, we omit discussion of the equally important work on piriform 
cortex conducted by Haberly, Bower, Hasselmo, D. Wilson, and others. We con-
clude by reviewing recent research illustrating how dynamical and spatial activity 
patterns build upon one another to establish an informative and fl exible code.  
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    Olfactory Bulb Circuitry 

 The main olfactory bulb in rodents has been extensively described in a number of 
review articles (Cleland  2010 ; Linster and Cleland  2009 ) which we reiterate here 
briefl y. Distributed patterns of activity evoked in primary olfactory sensory neurons 
(OSNs) by volatile chemical stimuli (odorants) are transmitted to the olfactory bulb 
via OSN axons. The axons of OSNs that express the same receptors, and hence 
exhibit the same chemoreceptive fi elds, converge together to form the glomeruli of 
the olfactory bulb input layer (Fig.  11.1a ); hence, each glomerulus effectively inher-
its the chemoreceptive fi eld of the OSN population that converges upon it. The 
olfactory bulb is believed to both fi lter and actively transform these incoming sen-
sory data, performing operations such as normalization, contrast enhancement, 
signal-to-noise regulation, and other state-dependent operations before conveying 
the processed olfactory information to multiple secondary olfactory structures via 
the axons of mitral cells. These transformations are performed by the interaction of 
OSN arbors and mitral cells with multiple classes of local interneurons, notably 
including the periglomerular cells, external tufted cells, and superfi cial short-axon 
cells of the glomerular layer as well as the more deeply positioned granule cells, 
which reciprocally interact with the lateral dendrites of mitral cells (Fig.  11.1a ). The 
olfactory bulb also receives extensive ascending inputs from other brain areas, 
including piriform cortex, and noradrenergic, serotonergic, and cholinergic nuclei.

       Bulbar Processing of Spatial Activation Patterns 

 Spatially distributed neuronal activity patterns specifi c to individual odorants were 
described as early as the 1970s and are present in all species that have been investi-
gated. Each olfactory stimulus activates a specifi c subset of olfactory receptor types, 
and hence glomeruli, that is uniquely defi ned by stimulus quality and concentration 
and can be presented as an activity map of the olfactory bulb surface (Fig.  11.1b ). 
These bulbar activity maps have been thoroughly analyzed by Michael Leon and 
colleagues, who have measured the glomerular activation responses to hundreds of 
different odor stimuli in rats and mice and shown not only that each evokes a char-
acteristic pattern of activity, but also that these patterns, under certain circumstances, 
are predictive of perceptual qualities (Cleland et al.  2002 ,  2007 ; Johnson and Leon 
 2007 ; Leon and Johnson  2003 ,  2006 ; Linster et al.  2001 ; Youngentob et al.  2006 ) 
(Fig.  11.1c ). Similar results have been obtained by other groups using different 
methods or species (Carlsson et al.  2002 ; Galizia and Menzel  2000 ; Guerrieri et al. 
 2005 ; Laska and Galizia  2001 ; Rubin and Katz  2001 ). 

 The spatial activation patterns measured in the glomerular layer are thought to 
represent the average afferent activity conveyed to the glomeruli by OSNs and 
hence to heavily infl uence the activation of the postsynaptic mitral cells and glo-
merular interneurons that innervate each glomerulus. Any computations performed 
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  Fig. 11.1    Olfactory bulb processing. ( a ) Schematic diagram of olfactory bulb circuitry. Olfactory 
sensory neurons (OSNs), each exhibiting a specifi c receptive fi eld for odorant stimuli, project to 
the olfactory bulb glomerular layer where they form excitatory synapses with mitral (Mi), external 
tufted (ET), and a subclass of periglomerular (PG) cells. Within the glomerular layer of the olfac-
tory bulb, local interneurons (PG, ET, and superfi cial short-axon cells (SA)) interact with one 
another and with the principal output cells (Mi) to construct odor representations that are conveyed 
to the deeper layers of the olfactory bulb by Mi activity patterns. In the deeper bulb, Mi cells inter-
act via their widespread lateral dendrites with another major class of local interneurons known as 
granule cells (Gr). The olfactory bulb also receives extensive inputs from other brain areas such as 
piriform cortex and noradrenergic, serotonergic, and cholinergic nuclei. ( b )  Top panel.  Schematic 
depiction of an odor-evoked spatial activation pattern on the surface of olfactory bulb. Various 
methods of neuronal activity mapping, both histological (e.g., 2-deoxyglucose, c- fos ,  Zif268 ) and 
physiological (e.g., calcium imaging), enable visualization of the odor-specifi c spatial activity pat-
terns conveyed to olfactory bulb by incoming OSNs.  Bottom panel.  Schematic illustration of odor- 
evoked fi eld oscillations measured in different physical locations across olfactory bulb. The 
distribution of oscillatory amplitudes refl ects odor quality and concentration. ( c ) Spatial activation 
patterns measured in the olfactory bulb glomerular layer are predictive of the perceptual similarity 
of odorants. Adapted from Cleland et al. ( 2002 ). ( d ) The relatively concentration-invariant repre-
sentations of mitral cells are believed to be generated by computations in the OB glomerular layer 
that normalize incoming activation patterns (Cleland et al.  2007 ); other glomerular circuits per-
form contrast enhancement functions to decorrelate similar odor representations (Cleland and 
Sethupathy  2006 ). The fi gures represent odor-evoked spatial activation patterns at two different 
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on these spatial patterns would alter the relative activation levels of mitral cells and 
consequently alter the pattern of activity that is conveyed to the piriform cortex and 
other postbulbar structures. Indeed, the spatial activation pattern across OB mitral 
cells changes in response to different types of learning and has been shown to 
depend on the behavioral relevance of the odor stimulation (Coopersmith et al. 
 1986 ; Coopersmith and Leon  1986 ; Faber et al.  1999 ; Fernandez et al.  2009 ; Salcedo 
et al.  2005 ; Sullivan and Leon  1986 ; Sullivan et al.  1988 ). Mechanistically, a num-
ber of transformations have been proposed to be performed on these spatial activa-
tion patterns in the glomerular layer, including contrast enhancement and 
concentration invariance functions. These functions rely on interactions between 
mitral cells and local interneurons and, despite differences in detail, are thought to 
be substantially similar across species. 

  Concentration invariance , or normalization, of odor representations is clearly 
observable in the concentration profi les of mitral cells. That is, while activity in 
mitral cells is altered by changes in odor concentration, it does not monotonically 
increase with concentration as does activity in OSNs (Wellis et al.  1989 ) (Fig.  11.1d ); 
indeed, on average, higher odor concentrations probably evoke slightly lower total 
activity levels across the mitral cell population. The network mechanism underlying 
this partial implementation of concentration invariance is not confi rmed, though it 
has been proposed (Cleland et al.  2007 ) to rely on the deep glomerular networks of 
external tufted cells, superfi cial short-axon cells, and periglomerular cells fi rst 
described by Shipley and colleagues (Aungst et al.  2003 ), and also likely involves 
feedback inhibition of OSN presynaptic arbors (McGann et al.  2005 ; Wachowiak 
et al.  2002 ). Notably, behavioral data collected in rats demonstrate that glomerular 
activation patterns normalized with respect to mean bulbar activity levels are better 
predictors of odor perception than raw patterns (Fig.  11.1e ), as would be predicted 
if mitral cell activation levels were comparably normalized across the bulbar popu-
lation (Cleland et al.  2007 ). A recent experimental study proposed a similar compu-
tational scheme in the  Drosophila  antennal lobe, concluding that relative 
concentration invariance is implemented in this structure as well (Olsen et al.  2010 ). 

  Contrast enhancement  is a common property of sensory systems that narrows 
(sharpens) sensory representations by specifi cally inhibiting neurons on the periph-
ery of the representation, thus enhancing the contrast between signal and 

Fig. 11.1 (continued) concentrations; hot colors correspond to higher activation levels. Raw, nor-
malized, and contrast- enhanced patterns are represented. The details of these functions and their 
underlying neural mechanisms have been previously reviewed (Cleland  2010 ; Cleland and Linster 
 2005 ; Linster and Cleland  2009 ). ( e ) Normalized activity patterns across OB are better predictors 
of odorant perceptual similarity than are raw activity patterns. The graph illustrates the pairwise 
perceptual dissimilarity between two different concentrations of the same odor compared to the 
dissimilarity between that odor and a second odor presented at the same concentration ( Behavior ), 
compared to the dissimilarities predicted from calculations of the overlap between their raw ( Raw ) 
and normalized ( Normalized ) glomerular activation patterns. The important feature is that the 
slopes of the  Behavior  and  Normalized  plots are both positive, in contrast to the  Raw  plot. Adapted 
from Cleland et al. ( 2007 )       
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background (Fig.  11.1d ). Contrast enhancement of spatial odor representations in 
the olfactory bulb is thought to be mediated by inhibitory interneurons both in the 
glomerular layer ( periglomerular cells , Cleland and Sethupathy  2006 ; Linster and 
Cleland  2004 ,  2009 ; Linster and Gervais  1996 ; Linster and Hasselmo  1997 ; Linster 
et al.  2005 )) and in the granule cell layer/external plexiform layer ( granule cells , 
Arevian et al.  2008 ; Urban  2002 ; Urban and Arevian  2009 )). A number of compu-
tational models have proposed solutions for this important function in the mamma-
lian OB and insect antennal lobe, including lateral interactions between glomeruli 
(Linster and Gervais  1996 ; Linster and Hasselmo  1997 ), computations local to each 
glomerulus (Cleland and Sethupathy  2006 ; Cleland  2010  #50), and local and lateral 
interactions between mitral and granule cells (Urban and Arevian  2009 ).  

    Field Oscillations and Temporal Activity 
Patterns in Olfactory Bulb 

 In the deeper layers of the olfactory bulb, or among global interneurons in the antennal 
lobe, the modulation of mitral cell  spike timing and synchronization  rather than the 
modulation of absolute response magnitude (numbers of action potentials) is 
thought to be the dominant means by which interneuronal interactions affect the 
content of odor representations (Fig.  11.1b ,  lower panel ). Degrees of synchroniza-
tion among OB or antennal lobe outputs were proposed to contribute to odor pro-
cessing and learning by Laurent and colleagues in a long series of studies in locust 
and honeybee (MacLeod et al.  1998 ; Stopfer et al.  2003 ; Stopfer and Laurent  1999 ; 
Wehr and Laurent  1999 ). These studies showed that the patterns of synchronization 
among principal neuron activation patterns, rather than the gross patterns of all 
odor-responsive cells, best identifi ed specifi c odorants (Fig.  11.2a ) and that these 
patterns of synchronization changed as a function of experience (Stopfer et al. 
 2003 ). Earlier studies in rabbits also had shown the odor-specifi city and sensitivity 
to learning of dynamical activity patterns in olfactory bulb (Freeman and Schneider 
 1982 ; Gray et al.  1986 ), fi rst demonstrating a potential functional role for bulbar 
dynamics. More recent studies have shown that olfactory bulb dynamics are modu-
lated by behavioral demands and that behavioral performance in olfactory percep-
tual tasks is correlated with these dynamics (Beshel et al.  2007 ; Kay  2003 ; Kay 
et al.  2009 ; Nusser et al.  2001 ; Rojas-Libano and Kay  2008 ). For example, Nusser 
and colleagues showed, using genetically modifi ed mice in which fast OB fi eld 
oscillations in the gamma range were stronger than in their wild-type littermates, a 
robust relationship between oscillatory power and odor discrimination perfor-
mance (Nusser et al.  2001 ). Data from Ravel and colleagues have shown that oscil-
lations in the beta band are modulated during a behavioral experiment, strongly 
correlating with the animal’s task performance (Martin et al.  2004a ,  b ,  2006 ; Ravel 
et al.  2003 ). In these experiments, strong oscillations in the beta band (15–30 Hz) 
appeared in the OB fi eld potential while the animal was fi rst learning to discrimi-
nate between a rewarded and a non-rewarded odorant; during this same epoch, 
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oscillations in the faster gamma band (40–80 Hz) were reduced in power. The 
occurrence of this phenomenon depended strongly on intact ascending projections 
to the olfactory bulb from other brain areas (Martin et al.  2006 ).
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  Fig. 11.2    Temporal processing of OB activation patterns. ( A ) In locusts and honeybees, patterns 
of synchronized spikes, rather than coarse fi ring rates, have been proposed to represent odor qual-
ity (Cleland  2010 ; Laurent and Davidowitz  1994 ; Wehr and Laurent  1999 ). In this schematic 
depiction, a stimulus-evoked oscillation is present in the fi eld potential recording ( EFP ) while 
several projection neurons ( PNs ) fi re action potentials in response to odorant presentation. While 
the overall PN fi ring rate does not enable discrimination of Odor 1 ( left panel ) and Odor 2 ( right 
panel ), the temporal organization of the action potentials and their synchronization patterns do 
enable discrimination of the two odors. ( B ) Contrast enhancement using synchronization proper-
ties. The neural responses to three odor stimuli C, S, and D are schematically depicted. Stimuli C 
and S evoke highly overlapping responses when coarse fi ring rates are used to determine their 
similarity (enclosed in  dotted boxes ), whereas stimuli C and D evoke very different response pat-
terns under the same conditions. In contrast, if only synchronized action potentials are considered 
relevant (enclosed in  solid boxes ), the patterns evoked by stimuli C and S become nearly nonover-
lapping and hence easily differentiated. While odorant D is affected in the same way, nothing is 
gained by the consideration of temporal information because the spatial patterns alone were 
already entirely nonoverlapping. ( C ) Regulation of the temporal precision of action potentials by 
inhibitory dendritic inputs. ( a ) Distribution of mitral cell interstimulus intervals (ISIs) under base-
line conditions in the absence of incoming inhibitory postsynaptic currents (IPSCs) on the lateral 
dendrites. ( b – d ) Distribution of ISIs when shunting inhibitory currents were opened 5, 15, or 
25 ms after a mitral cell spike. Inhibitory inputs on the lateral dendrites increased the temporal 
precision of mitral spiking. Adapted from David et al. ( 2009 )       
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   Evidence that fi eld oscillations and spike synchronization patterns play a role in 
odor perception had previously been gathered in honeybees in a study showing that 
bees in which oscillatory dynamics and synchronization patterns were pharmaco-
logically impaired were more prone to confuse chemically similar odorants (Stopfer 
et al.  1997 ). This study drew a lot of attention to the importance of synchronization 
for odor representations but said little regarding the role of spatial activation pat-
terns. Nevertheless, by the late 1990s, the role of dynamical patterning in the olfac-
tory bulb and antennal lobe had been widely accepted. Many laboratories began 
working on related questions, notably on the underlying mechanisms by which 
these fi eld oscillations were generated. Presently, OB fi eld oscillations are usually 
ascribed to the feedback loop between principal neurons and inhibitory interneurons 
(Bathellier et al.  2008 ; David et al.  2009 ; Davison et al.  2003 ; Lagier et al.  2004 ; Li 
and Hopfi eld  1989 ) or to intrinsic oscillatory properties of principal neurons syn-
chronized by common inhibitory inputs (Brea et al.  2009 ; Ermentrout et al.  2007 ; 
Galan et al.  2006 ). Interestingly, to date little more has been learned about the func-
tion of these dynamical processes beyond their suggested role in further sharpening 
odor representations so as to improve olfactory discrimination. 

  Contrast enhancement by synchronization . Given that the regulation of fi eld oscil-
lations and mitral cell spike synchronization by dynamical interactions in the deep 
bulb affects perception, how might these subtle modifi cations of neuronal activity 
be interpreted by downstream structures? Theoretical models have established some 
mechanisms by which patterns of neuronal synchronization can be regulated by 
bulbar circuitry to effect arbitrary patterns of contrast enhancement and subse-
quently interpreted by postbulbar neurons (Cleland and Linster  2002 ; Linster and 
Cleland  2001 ,  2010 ). Interestingly, such models suggest that only spikes that are 
relatively synchronized with others are read out by downstream neurons, with asyn-
chronously fi ring neurons effectively becoming excluded from the odor representa-
tion. This could be an important coding principle for systems in which principal 
neurons exhibit substantial input-independent baseline activity, as mitral cells do. 
Among synchronized neurons, the degree of contrast can be manipulated by chang-
ing synchronization properties (Fig.  11.2b ), e.g., by changes in neuromodulatory 
input activity mediating attentive processes or changes in stimulus salience. 
Computational models using this approach have been able to explain behavioral 
results demonstrating that changes in synchronization properties correspond to 
changes in the perceptual discrimination of odors (Cleland and Linster  2002 ). 

  Signal-to-noise ratio . Muscarinic cholinergic neuromodulation, the receptors for 
which are expressed in the deeper layers of the OB, enhances response precision in 
granule and mitral cells in OB slices (Pressler et al.  2007 ). Simulations of mitral–
granule cell interactions, in conjunction with experimental data, show that inhibi-
tory inputs along the secondary dendrites affect spike timing in mitral cells and 
enhance the temporal precision of spikes occurring in response to odor stimuli 
(David et al.  2009 ) (Fig.  11.2c ). While more thorough study is necessary to explore 
the implications, these data in conjunction suggest a role in signal-to-noise modula-
tion for the deeper layers of bulbar processing.  
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    Spatiotemporal Activity Patterns and Odor Perception 

 As reviewed above, the evidence to date clearly demonstrates that both spatial and 
temporal activation patterns refl ect odor identity, predict perceptual qualities to a 
certain degree, and are modifi ed by learning. Combined experiments in honeyebees 
(Stopfer et al.  1997 ) and rats (Beshel et al.  2007 ) have begun to explain their rela-
tionship to one another. In the honeybee antennal lobe, odor stimulation evokes 
stimulus-locked oscillations in the 15–30 Hz frequency range that are accompanied 
by synchronization of action potentials among output neurons (Stopfer et al.  1997 ) 
(Fig.  11.2a ). Blocking fast GABAergic transmission in the antennal lobe abolished 
the stimulus-evoked fi eld oscillations without evoking clearly observable changes 
in the odor response properties of output neurons (MacLeod and Laurent  1996 ). 
According to the Laurent group, only the synchronization properties of these neu-
rons changed, and not their individual responses to odors. In a parallel honeybee 
behavioral experiment, blockade of GABAergic transmission was shown (1) to have 
no effect on the acquisition of an odor-reward association, (2) to have no effect on 
the discrimination of a chemically dissimilar odorant from the conditioned odorant, 
but (3) to impair the discrimination of chemically and perceptually  similar  odorants 
from the conditioned odorant (Stopfer et al.  1997 ). Subsequent calcium imaging 
experiments established that these chemically similar odorants evoked highly over-
lapping spatial patterns in the antennal lobe (Sachse and Galizia  2002 ). It is clear 
from these data that spike synchronization in olfaction becomes functionally impor-
tant specifi cally when structurally similar odorants must be discriminated, since the 
perceptual discrimination of dissimilar odorants was not affected by the impairment 
of synchronization (Fig.  11.3 ).

   In related work in rats, Kay and colleagues (Beshel et al.  2007 ) have shown that 
oscillatory synchrony in the olfactory bulb is systematically affected by the diffi -
culty of an odor discrimination task. Specifi cally, when discriminating between 
highly similar odorants in a forced-choice task, the power of OB gamma oscilla-
tions was signifi cantly increased in comparison to the oscillatory power recorded 
when the same rats were discriminating dissimilar odorants. These results strongly 
suggest that oscillatory dynamics are functionally utilized during odor discrimina-
tion in proportion to task diffi culty and that behavioral demands can regulate oscil-
latory dynamics (Fig.  11.3 ). As in the honeybee experiments described above, prior 
knowledge and understanding of the role of odor-specifi c spatial activity patterns 
was crucial to the success of these experiments. 

 Together, these two data sets demonstrate that temporal dynamics and spatial 
activation patterns both play important roles in odor perception. Specifi cally, tem-
poral properties appear to serve a secondary role, modulating and fi ne-tuning the 
basic spatial activation patterns evoked by odor stimuli in response to behavioral 
demands and neuromodulatory state. While much remains to be studied, the inte-
gration to date of these sophisticated mechanisms of perception has helped support 
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a substantial revival in computational olfaction over the last 2 decades, facilitating 
increasingly comprehensive analyses of both spatial and temporal processing 
capabilities.     
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