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Definition

Computational modeling is an essential tool for developing an understanding of how nervous
systems compute. This is particularly so for questions that span levels of analysis, attempting to
integrate cellular, neuromodulatory, and electrophysiological data with behavioral performance. In
neuroscience, computational techniques are used to study the mechanisms underlying neuronal or
network responses to simple and complex inputs, analyze interactions among the parameters
governing the properties of a neuron or network, and determine the coordinated mechanisms that
underlie experimentally observed rich phenomena such as coherent oscillations or synaptic plastic-
ity. In particular, computational modeling has been successful in associating neural activity with
behavioral function, proposing neurophysiological mechanisms for observed behavioral capabili-
ties, and generating novel, testable hypotheses. In our lab, computational models of behavioral
phenomena have enabled us to elucidate relationships among odorant physical properties, top-down
neuromodulatory signals, olfactory neural network operations, and odor perception. We here briefly
review this approach and highlight some examples from the last 10 years.

Detailed Description

Our standard approach to modeling olfactory behavior is as follows: (1) determine via behavioral
pharmacology or similar experiments which olfactory brain areas are likely to underlie a certain
aspect of olfactory perception; (2) create a computational simulation of those brain areas, incorpo-
rating as much constraining experimental detail as possible given the level of modeling chosen;
(3) use the model to simulate specific relationships between neural activity patterns and perception,
generating testable hypotheses; (4) based on these hypotheses, perturb both experimental and
computational variables via lesions, training parameters, pharmacology, and other experimental
tools. The outcome of these studies then serves to inform the computational models and help
determine the direction of future study.

One critical aspect of this process is the selection of the level of detail at which to build the model.
Our modeling is nearly all based on specific neural systems – as opposed to generic neural
networks – but the level of detail implemented must be appropriate given the available experimental
data in order for the model to contribute meaningfully to this research approach. More abstract
models of particular networks, made with relatively reduced, single-compartment neurons, are
appropriate when the data include general information about neurons being excitatory or inhibitory,
reasonable estimates of synaptic connectivity patterns, and neuromodulator effects that are thought
to excite, inhibit, and/or affect the excitability of particular cell types. Building simpler models with
fewer free parameters enables a relatively efficient exploration of what such a network can do and
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how the different effects of neuromodulators, for example, could combine to produce a functional
outcome that corresponds to behavioral data. Following up on hypotheses generated by such models
can increase the efficiency of experimental design, ultimately producing data sufficient to build the
richer and more complex biophysical models.

Biophysical models require considerably more experimental data in order to be useful. They
define physical membrane properties such as surface area, capacitance, and cell morphology; model
many individual mechanisms such as sodium channels, calcium diffusion, and NMDA receptors;
deploy these mechanisms into or with respect to the cell membrane; and often are morphologically
multicompartmental. Oligocompartmental model neurons, in particular, are built using perhaps
2–20 compartments that serve to accurately model spike propagation times, segregate electrotoni-
cally distant parts of the neuron, construct cells with heterogeneous channel distributions, and/or
implement other phenomena in which spatial heterogeneity matters. (Neuron models with hundreds
of compartments, in contrast, usually are constructed to replicate the arbor of a specific neuron
measured from imaging data.) If there are constraining data for enough of these parameters, then
such models are singularly powerful, as they are able to implement underappreciated computational
elements like shunt inhibition, intrinsic resonance properties, and the partial isolation of spines, and
at their best they can predict the network-level consequences of, for example, localized effects on ion
channel properties. In the absence of sufficient data, however, such models lose most of their
predictive value, as they simply contain too many free parameters which, if unconstrained, can
enable meaningless fits to many datasets; simpler models should be used in such situations.
Irrespective of the level of complexity, however, useful models usually do not simply replicate
established data but employ their capacity to quantify and juxtapose diverse datasets in order to
explain what is known and explore what that might imply. Models can range from being quite tightly
based on cellular data (e.g., Li and Cleland 2013) to being quite speculative (e.g., Linster and
Cleland 2010), but in either case, the task is to understand how best to ask the next question. While
models that stand the test of time are laudable, models that are subsequently superseded by new data
often have served their scientific purpose well.

Over the last two decades, we have developed computational models of many behavior-related
processes within olfaction, including the cholinergic, noradrenergic, and dopaminergic modulation
of bulbar circuitry (Linster and Gervais 1996; Hasselmo et al. 1997; Linster and Hasselmo 1997;
Linster and Cleland 2002; Linster et al. 2003, 2011; Mandairon et al. 2006a; Escanilla et al. 2009;
Devore and Linster 2012; Devore et al. 2012; de Almeida et al. 2013; Li and Cleland 2013),
perceptual learning (Mandairon et al. 2006b), mixture processing in the olfactory bulb (Linster
and Cleland 2004), the bulbar mechanisms regulating differentiation among similar odors (Cleland
and Sethupathy 2006; Cleland et al. 2007; Cleland and Linster 2012), the role of spike synchroni-
zation in antennal lobe odor processing (Linster et al. 1994; Linster and Cleland 2001) and synaptic
plasticity in olfactory bulb and cortex (Linster et al. 2007, 2009; Linster and Cleland 2010), and the
multiple concerted processes required to enable concentration invariance in odor perception
(Cleland and Linster 1999; Cleland et al. 2007, 2011). In each case, a critical factor affecting
model validity has been the comparison between model output and behavioral results. How does one
determine whether and how the values of model output variables correspond to measured indices of
behavior? While this is always ultimately an experimental question, we have determined several
behavioral indices that can be reliably predicted by specific output metrics from our computational
models, including perceptual similarity, discrimination performance, learning rate, memory capac-
ity, and memory persistence. For example, we first demonstrated that the pairwise overlap in
neuronal activation patterns across the olfactory bulb input layer could predict pairwise perceptual
similarity (Cleland et al. 2002). To the extent that this result is generalizable as a basic principle of

Encyclopedia of Computational Neuroscience
DOI 10.1007/978-1-4614-7320-6_607-1
# Springer Science+Business Media New York 2014

Page 2 of 10



olfactory coding, one then can, in subsequent studies, compare changes in pairwise overlap within
the computational model to behavioral changes in perceptual discrimination. This in turn enables,
for example, the effects of neuromodulators on olfactory discrimination to be modeled and tested
against behavioral data (e.g., Mandairon et al. 2006a). Importantly, while this principle of pattern
overlap among glomeruli has been largely supported experimentally, its basis is inductive and it
cannot be reliably extrapolated; e.g., it may not extend reliably to spatial patterns among mitral cells
or within piriform cortex. Like theoretical models in general, these models serve to organize our
understanding of complex datasets until a superior theory can be constructed.

We here describe three specific examples of the modeling of olfactory behavior that provided
useful insights into the underlying neural mechanisms. First, an abstract model of spike timing and
oscillations in the honeybee antennal lobe explained how neuronal synchronization patterns could
underlie seemingly paradoxical behavioral generalization effects observed across different odor
concentrations (Linster and Cleland 2001, 2002). Second, a large-scale, reduced model of olfactory
bulb outlined a feedback normalization network enabling concentration invariance in bulbar output,
consistent with behavioral performance, and showed that network properties in the bulb appear to be
optimized for this function (Cleland et al. 2007). Third, a moderately detailed computational model
of cholinergic modulation in the olfactory bulb glomerular layer predicted coordinated network-
level and behavioral outcomes from the properties and localization of nicotinic cholinergic receptors
in the olfactory bulb (Mandairon et al. 2006a).

Example 1: Odor Concentration and Spike Timing in the Insect Antennal Lobe. Honeybee olfaction
is an important model system for olfactory learning due to its well-developed and efficient behav-
ioral conditioning paradigms and the relatively well-understood neural circuits involved in odor
learning. The behavioral relevance of spike timing regulation in olfaction was first demonstrated in
the honeybee antennal lobe, in which it was demonstrated that stimulus-evoked synchronous spiking
was necessary for fine odor discrimination. Specifically, in combined electrophysiological and
behavioral experiments, when fine-scale spike synchrony was disrupted, bees’ odor discrimination
performance was impaired, even though the overall profile of evoked activity in antennal lobe
neurons remained intact (Stopfer et al. 1997, 2003). Using the same behavioral paradigm, it
subsequently was demonstrated that honeybees discriminate odorants better when they are
presented at high concentrations than when they are presented at lower concentrations (Bhagavan
and Smith 1997). Neurophysiologically, this result was counterintuitive because calcium imaging
studies have shown that higher concentration odor stimuli activate correspondingly larger and more
overlapping areas of the antennal lobe (Strauch et al. 2012), which, given that overlap predicts
perceptual similarity, should result in poorer discrimination. Computational modeling resolved this
behavioral conundrum by combining the findings of these two lines of research (Linster and Cleland
2001; Cleland and Linster 2002). The model exhibited oscillations and spike synchronization
patterns similar to those recorded in the antennal lobe and demonstrated that while higher-intensity
odor inputs would evoke broader neural activity overall, an increasingly narrow subpopulation of
neurons within this broad ensemble would be increasingly strongly synchronized. Synchrony-
sensitive follower neurons and plasticity processes responding selectively to these highly synchro-
nous inputs would therefore interpret higher concentration inputs as more discriminable from one
another, matching behavioral observations, while blocking these synchronization processes would
impair fine odor discrimination. In contrast, lower concentration inputs would evoke weaker
synchrony among antennal lobe projection neurons and generate less activity or plasticity in
follower cells (Fig. 1). This work illustrated how computational modeling can fuse separate datasets
derived from a common system to explain seemingly unrelated results, constructing a common
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Fig. 1 Spike synchronization and odor perception in the honeybee antennal lobe. A. Network diagram of the honeybee
antennal lobe model. The network was created based on known neuron types and was capable of generating odor-
evoked, GABAergic neuron-dependent field potential oscillations that shaped spike timing as described experimentally.
Briefly, input from olfactory sensory neurons (top) directly activates projection neurons (PNs) as well as inhibitory local
interneurons (LNs). Local interneurons are reciprocally connected with each other in a feedback network which
generates synchronous oscillations when activated. Local interneurons also inhibit projection neurons and are capable
of synchronizing projection neuron spikes with respect to these network oscillations. Because local interneurons in the
model have higher activation thresholds than projection neurons, highly activated glomeruli oscillate more strongly, and
the corresponding projection neurons are most strongly synchronized. The associative neuron (AN), corresponding to
the reward-activated neuron VUMmx1 in honeybees, is sensitive to synchronized spike inputs. B. In the model,
increasing odor concentration at the input of the antennal lobe generates more widespread activation patterns and
hence increased overlap among odor representations (Bi designates a lower concentration odorant, Bii a higher
concentration odorant). Each circle represents a glomerulus receiving input from sensory neurons expressing a shared
olfactory receptor; darker colors symbolize stronger activation, and striped glomeruli indicate glomeruli substantially
activated by both inputs. Glomeruli are mapped onto a hypothetical one-dimensional circular axis of receptive field
similarity (Cleland and Linster 2002).O1 andO2 denote the centers of the glomerular patterns activated by two different
odors. C. Increased odor concentration also generates stronger oscillations in activated glomeruli, resulting in greater
synchrony among a narrower population of the most strongly activated projection neurons. D. Increased synchrony
leads to reduced generalization between two odors presented at higher concentrations than when presented at lower
concentrations, despite their larger overlap at the input to the antennal lobe. Odor conditioning was simulated by
presenting a conditioning odor stimulus to the model at a low (25% of maximum activation) or high (100% of maximum
activation) intensity and training the network on the odor. Subsequently, the network was presented with a novel odor,
and the degree of overlap between the representations of the conditioned and novel odors was calculated
(generalization). The graph shows the degree of generalization to the novel test odor after conditioning at low and
high stimulus intensities (Figures adapted from Cleland and Linster (2002))
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theoretical basis upon which subsequent experiments can be based. Since this time, the study of
spike synchronization processes within olfactory coding research has grown substantially, particu-
larly with the elaboration of spike timing-dependent synaptic plasticity algorithms in the brain (Song
et al. 2000; Gao and Strowbridge 2009; Linster and Cleland 2010).

Example 2: The Problem of Concentration Invariance in the Olfactory Bulb. Odorants elicit widely
distributed patterns of activity across the olfactory bulb input layer, as evidenced by 2-deoxyglucose
activity mapping (Johnson and Leon 2007), intrinsic imaging (Meister and Bonhoeffer 2001), and
other imaging techniques. These activation patterns are substantially altered when odor concentra-
tion is changed (Johnson et al. 1999; Johnson and Leon 2000; Meister and Bonhoeffer 2001), to the
extent that the pattern evoked by a given odor may more closely resemble that of a different odor
than that of itself when presented at a different concentration (Cleland et al. 2007). Despite this fact,
animals can identify a given odor over a reasonable concentration range, and – critically – neural
response patterns at the output of the olfactory bulb are less affected by odor concentration than are
those measured at the input. Interestingly, simple normalization (z-scoring) of these odor-evoked
patterns rendered them reasonably consistent across concentrations (Johnson et al. 1999; Johnson
and Leon 2000), and behavioral tests measuring the pairwise perceptual similarities of odorants
showed that perception was better predicted by normalized activity patterns than by non-normalized
activity (Cleland et al. 2007) (Fig. 2). These results suggested that these odor-specific patterns are
actively normalized within olfactory bulb circuitry. Computational modeling based on these data
demonstrated how established neural circuits in the olfactory bulb glomerular layer could perform
such a normalization function. Specifically, a laterally interconnected network of excitatory inter-
neurons, synapsing onto local inhibitory interneurons and with a broad distribution of lateral
projection distances estimated from anatomical data (Aungst et al. 2003), was shown capable of
performing feedback normalization uniformly across the bulb; moreover, the optimal connectivity
and spread of this network to achieve global feedback normalization at minimal metabolic cost
(as predicted by the simulations) corresponded closely to that determined experimentally (Cleland
et al. 2007). These simulations showed that a partially localized network of microcircuits could
underlie a nonlocalized, uniform effect, normalizing odor responses in order to render them more
concentration invariant. In this example, behavioral experiments were necessary to validate the basis
for the computational model by demonstrating that global normalization correctly predicted per-
ceptual similarities. Interestingly, in subsequent experimental studies, the role of these laterally
projecting interneurons in broadly inhibiting mitral cells across the olfactory bulb was confirmed
(Marbach and Albeanu 2011), even though the interneurons themselves since have been shown to be
GABAergic and dopaminergic rather than glutamatergic as was initially believed (Kiyokage
et al. 2010). This provides an excellent example for how a model can serve its purpose, being
correct at a certain level and enabling the coordinated interpretation of diverse datasets, while also
becoming outdated by experimental progress and requiring update or replacement.

Example 3: Effects of Nicotinic Receptor Activation on Odor Discrimination: Behavioral Experi-
ments and Biophysical Modeling. The cellular effects of nicotinic cholinergic receptor activation in
the olfactory bulb are relatively well understood (Castillo et al. 1999; Pressler et al. 2007). Nicotinic
cholinergic activation opens cation currents both in mitral cells, exciting them and increasing their
odor-evoked activation levels, and in GABAergic periglomerular cells, increasing their inhibition of
mitral cell primary dendrites. Hence, nicotinic receptor activation simultaneously excites and
(indirectly) inhibits mitral cells in the bulb – two effects that initially appear to cancel one another
out. However, computational modeling of these two neuron types embedded within their glomerular

Encyclopedia of Computational Neuroscience
DOI 10.1007/978-1-4614-7320-6_607-1
# Springer Science+Business Media New York 2014

Page 5 of 10



microcircuit showed that rather than canceling each other out, these two effects complement one
another (Linster and Hasselmo 1997; Linster and Cleland 2002). Specifically, while the increased
inhibition on mitral cell primary dendrites sharpens mitral cell responses to odorants by suppressing
weak responses, the concomitant excitation near the soma maintains or enhances the strength of
response within this narrower receptive field. As a consequence, receptive fields are sharper but
stronger (Mandairon et al. 2006a). When comparing ensemble responses to multiple odorants in this
model, the overlap in mitral cell activation patterns is reduced when nicotinic receptors are activated,
separating the representations of highly similar odors and predicting that they would become easier
to discriminate. We tested this prediction behaviorally and found that, indeed, the blockade of
nicotinic cholinergic receptors in the olfactory bulb reduced rats’ capacity to differentiate between
perceptually similar odorants, whereas it did not affect the perception of chemically and perceptually
dissimilar odor pairs. Moreover, enhancing cholinergic modulation during behavior improved rats’
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Fig. 2 Normalization in the olfactory bulb glomerular layer. (a) Schematic depiction of odor representations in the
olfactory bulb glomerular layer. Odorants are ordered along a hypothetical axis of similarity onto which individual
glomeruli can be mapped. Note that this is purely for representational purposes and that such orderly mapping does not
exist in the system. Glomerular activation becomes stronger and spreads by activating additional glomeruli as odor
intensity increases; consequently, the overlap between two odor representations increases. (b) Despite the increase in
overlap between odorants at higher concentrations, rats and mice can differentiate odorants better as concentration
increases. The graph shows the percent correct trials in a forced choice go/no-go task in rats as a function of odor
concentration (Wei et al. 2006). (c) In certain cases, the raw and normalized activation patterns evoked by a given
odorant at different concentrations are more different from one another than they are to the representation of an entirely
different odorant. The graph depicts (black lines) indices of dissimilarity between glomerular activation patterns,
calculated from raw or normalized 2-deoxyglucose uptake data, computed between a single odor (A) presented at two
concentrations and between that odor and a different odor (B), both presented at the same concentration (Cleland
et al. 2007). For comparison, the graph also depicts (red line) the corresponding behavioral results (i.e., degree of
perceptual dissimilarity) in response to the same odor pairs. The normalized activation patterns correctly predict
behavioral perception whereas the raw data do not.
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Fig. 3 Nicotinic cholinergic neuromodulation of odor discrimination in the olfactory bulb glomerular layer. (a)
Schematic of a simplified glomerular microcircuit annotated with relative spike rates to indicate levels of activation.
Olfactory bulb output neurons (mitral cells; Mi) and GABAergic interneurons (PG) receive direct afferent input from
sensory neurons (OSNs). PG cells directly inhibit mitral cells and suppress their responses to weak inputs (left panel),
whereas strongly activated mitral cells overcome this inhibition (right panel). Both PG and mitral cells express nicotinic
cholinergic receptors and are further activated by cholinergic neuromodulation. (b) Effects of nicotinic receptor
activation. Graphs depict the tuning curves of neuron types to a range of similar odorants; the abscissa depicts
a hypothetical axis of odor similarity. Top panel, Activity profiles in the unmodulated state. PG inhibition inhibits the
weakly excited edges of the OSN odor representation, sharpening the resulting mitral cell representation (Cleland and
Sethupathy 2006; Cleland and Linster 2012). Bottom panel, Effects of nicotinic cholinergic neuromodulation. Nicotinic
modulation increases PG cell activity, inhibiting mitral cells more strongly and thereby sharpening their tuning curves
(solid red line). Concurrently, the nicotinic activation of mitral cells amplifies their responses to odor inputs (dotted red
line). (c) Behavioral experiments demonstrate that animals’ discrimination between similar odors is reduced when
nicotinic receptors are blocked and increased when cholinergic inputs are potentiated. The ordinate depicts an index of
discrimination averaged among pairs of similar odorants (Chaudhury et al. 2009)
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ability to differentiate between perceptually similar odorants (Mandairon et al. 2006a; Chaudhury
et al. 2009) (Fig. 3). In this study, the known cellular effects of nicotinic receptor activation were
sufficient to predict perceptual effects once constructed into an appropriate network model,
suggesting that the computational model captured the essence of this neuromodulatory process.

Conclusion

Computational modeling of the neurons and networks of the brain provides essential tools and
frameworks for understanding the neural mechanisms underlying animal behavior. By juxtaposing
diverse experimental results within appropriate theoretical frameworks, constructing functional
scenarios, and assessing the likelihood and consequences of each, modeling facilitates the theoret-
ical analysis of complex datasets and the construction of testable hypotheses, providing an essential
link between physiology and behavior.
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