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ABSTRACT: Inhibition is an important component of many cognitive
functions, including memory. For example, the retrieval-induced forget-
ting (RIF) effect occurs when extra practice with some items from a
study list inhibits the retrieval of the nonpracticed items relative to a
baseline condition that does not involve extra practice. Although coun-
terintuitive, the RIF phenomenon may be important for resolving inter-
ference by inhibiting potentially competing retrieval targets.
Neuroimaging studies suggest that the hippocampus and prefrontal cor-
tex are involved in the RIF effect, but controlled lesion studies have not
yet been performed. We developed a rodent model of the RIF training
procedure and trained control rats and rats with temporary inactivation
of the hippocampus or medial prefrontal cortex (mPFC). Rats were
trained on a list of odor cues, presented in cups of digging medium
with a buried reward, followed by additional practice trials with a sub-
set of the cues. We then tested the rats’ memories for the cues and
their association with reward by presenting them with unbaited cups
containing the test odorants and measuring how long they persisted in
digging. Control rats exhibited a robust RIF effect in which memory for
the nonpracticed odors was significantly inhibited. Thus, extra practice
with some odor cues inhibited memory for the others, relative to a
baseline condition that involved an identical amount of training. Inacti-
vation of either the hippocampus or the mPFC blocked the RIF effect.
We also constructed a computational model of a representational learn-
ing circuit to simulate the RIF effect. We show in this model that
“sideband suppression” of similar memory representations can repro-
duce the RIF effect and that alteration of the suppression parameters
and learning rate can reproduce the lesion effects seen in our rats. Our
results suggest that the RIF effect is widespread and that inhibitory
processes are an important feature of memory function. VC 2014 Wiley
Periodicals, Inc.
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INTRODUCTION

Inhibition is an important component of many cognitive functions,
including attention, perception, language, thought, and action (Dagen-

bach and Carr, 1994). A common pattern in the liter-
ature is that the processing of one item is facilitated
while the processing of potentially competing items is
inhibited. For example, selective attention to one item
is accomplished, in part, by inhibiting attention to
distractors (Tipper, 1985). Similarly, semantic cueing
with one homophone (e.g., bank-money) inhibits cue-
ing with another (bank-river, Simpson and Kang,
1994). These examples of selective inhibition based
on feature-similarity may be functionally analogous to
the visual system’s center-surround receptive field
mechanism of contrast enhancement, except that it is
not constrained to a clearly defined two-dimensional
topology of similarity. A comparable form of inhibi-
tion occurs in the domain of memory. The retrieval-
induced forgetting (RIF) effect (Anderson et al.,
1994) occurs when retrieval practice with some items
from a study list inhibits the retrieval of the nonprac-
ticed items relative to a baseline condition that does
not involve retrieval practice.

In typical studies of the RIF effect, subjects are
trained on a list of category-exemplar word pairs (e.g.,
FRUIT—apple, FRUIT—orange, etc.). After the ini-
tial training trials, subjects are given additional
retrieval practice with some of the items from the list
(e.g., FRUIT—a___, in response to which the subject
is expected to retrieve “apple”). Subjects then undergo
retrieval testing in which they are asked to recall as
many of the exemplars from the training list as possi-
ble. Unsurprisingly, recall of the practiced items gen-
erally is improved, relative to a baseline condition in
which no retrieval practice was given. However, recall
of the nonpracticed items is significantly inhibited rel-
ative to baseline. Importantly, this retrieval inhibition
occurs even though the nonpracticed items are given
the same amount of training as the baseline items,
indicating that it is the retrieval practice with some
items that causes poorer retrieval of the nonpracticed
items (Anderson et al., 1994).

Experimentally, the RIF effect is manifested as a
retrieval failure, wherein recall of the nonpracticed
items is poorer than baseline. Indeed, the phrase
‘retrieval-induced forgetting’ implies a memory failure.
However, the RIF phenomenon may be a highly
adaptive mechanism for resolving interference. Inter-
ference is a critical problem for high volume memory
systems in which many items have mutual
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associations. In everyday situations, successful memory retrieval
depends on the ability to retrieve the correct target item from
memory while inhibiting the retrieval of potentially competing,
inappropriate memories. For example, remembering where I
parked my car this morning requires that I retrieve today’s
parking spot without retrieving all the other places that I have
parked recently.

Inhibiting the retrieval of competing memories is an effective
strategy for reducing interference, and experimental evidence
suggests that RIF serves this purpose. The RIF effect occurs
specifically in response to retrieval competition (for review see
Levy and Anderson, 2002). Consistent with this interpretation,
words that are strong exemplars of a category (e.g., apple) pro-
duce greater retrieval competition and are inhibited more
strongly than weak exemplars (e.g., kiwi). Moreover, the inhibi-
tion of nonpracticed items is time-limited, persisting for at
least 1 h but less than 24 h in Levy and Anderson’s (2002) par-
adigm, suggesting that the RIF effect provides an ongoing
mechanism for highlighting recently or frequently used memo-
ries for easy retrieval.

The RIF phenomenon has been extensively studied in
humans. In addition to the cue-recall task described above, it
has been demonstrated with recognition memory (Spitzer and
Bauml, 2007), implicit memory (Veling and van Knippenberg,
2004), semantic memory (Johnson and Anderson, 2004),
visuospatial object memory (Ciranni and Shimamura, 1999),
eyewitness memory (MacLeod, 2002), and even foreign lan-
guage acquisition (Levy et al., 2007). Previous neuroimaging
studies have implicated the hippocampus and the prefrontal
cortex (PFC) in the RIF effect (Anderson and Green, 2001;
Wimber et al., 2008) and several other kinds of retrieval inhi-
bition (Wagner et al., 2001; Depue et al., 2007; Crescentini
et al., 2010). Some authors have argued that retrieval inhibi-
tion involves direct interactions between the hippocampus and
PFC, with the PFC exerting executive control over hippocam-
pal retrieval processes (Anderson and Green, 2001; Bunge
et al., 2004; Munakata et al., 2011). However, to date, there
has not been an animal model of the RIF effect, and no con-
trolled lesion studies of retrieval inhibition have been per-
formed. In this study, we adapted the RIF procedure for use in
rodents by presenting rats with a list of odor cues, followed by
extra practice with some of the odors (or no extra practice in
the baseline condition) and then testing of their memory for
the odors. We then used temporary neurochemical inactivation
to examine the respective roles of the hippocampus and the
medial prefrontal cortex (mPFC) in mediating the RIF effect.

To examine possible mechanisms of the RIF effect and
inform our interpretation of temporary inactivation data, we
also constructed a computational model of a representational
learning circuit and trained it on the RIF task. Because RIF
functions to suppress retrieval of similar memories that may
compete with the target memory, while sparing dissimilar
memories that do not threaten interference, we based our
model on a high-dimensional metric of similarity.
Consequently, suppression of potentially competing memories
could be achieved via sideband suppression within this

high-dimensional metric space, a technique that we previously
have used to model the processing of perceptually similar odor-
ants (Cleland et al., 2009; Cleland and Linster, 2012). Impor-
tantly, in this model framework, similarity is conceptualized
broadly to include learned associations among odor cues and
contexts encountered during the training experience. That is, it
includes all of the shared elements that could lead to interfer-
ence between memories. After modeling the RIF effect, we
manipulated appropriate model parameters to simulate the
effects of hippocampal or prefrontal cortical inactivation.

METHODS

Overview

We trained rats on a rodent version of the RIF task which
involved training on a list of odor cues, followed by extra prac-
tice with some of the odors (or no extra practice in the baseline
condition) and then testing of the odor memories. We con-
ducted three experiments: (1) to determine whether the RIF
effect can be seen in rodent olfactory memory, (2) to determine
whether hippocampal inactivation disrupts the RIF effect, and
(3) to determine whether mPFC inactivation disrupts the RIF
effect. We then assessed our results using a computational
model.

Subjects, Surgical Procedures, and Infusions

Subjects were 64 adult male Long-Evans rats (Charles River
Laboratories, Wilmington, MA). Rats were assigned to either a
hippocampal inactivation group (n 5 16), an mPFC inactiva-
tion group (n 5 16), an unoperated control group (n 5 16), or
hippocampal (n 5 8) or mPFC (n 5 8) saline control groups.
Unoperated controls and rats given saline infusions did not dif-
fer on any measure of performance, so they were combined
into a single control group. For rats assigned to infusion
groups, bilateral guide cannulae (one injection site in each
hemisphere, Plastics One, Roanoke, VA) were stereotaxically
positioned just above the target location so that the infusion
cannula, which protruded 1.0 mm beyond the tip of the guide
cannula, would be positioned in the target area (Fig. 1, dorsal
CA1: 3.6 mm posterior and 2.6 mm lateral to bregma, 2.2
mm ventral to the cortical surface; mPFC: 3.2 mm anterior
and 0.5 mm lateral to bregma, 2.7 mm ventral to the cortical
surface). The guide cannulae were secured to the skull with
bone screws and dental acrylic. The rats were given an antibi-
otic (5 mg/kg Baytril) and an analgesic (5 mg/kg ketoprofen)
before surgery. After at least 1 week of recovery, the rats were
placed on a restricted feeding regimen (80–85% of free feeding
weight) and began training. Temporary inactivation of the hip-
pocampus or mPFC was induced by infusing the GABAA ago-
nist muscimol into the corresponding region of the brain.
Specifically, 30 min before the relevant training sessions, 0.5
mL of a 1 mg/mL muscimol solution in saline or the same vol-
ume of saline vehicle was infused into each hemisphere at a
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rate of 0.5 mL/min. The infusion cannulae were left in place
for 1 min after the infusions. All procedures complied with
guidelines established by the Cornell University Institutional
Animal Care and Use Committee.

Apparatus and Behavioral Training Procedures

Details of the apparatus and odor stimuli have been published
elsewhere (Butterly et al., 2012). Briefly, the rats were trained in a
white Plexiglass chamber (45 cm 3 60 cm 3 40 cm deep)
equipped with a removable divider which separated the chamber
into an odor presentation area and an intertrial interval area. Before
training, the rats were shaped to dig for buried rewards (45 mg
sucrose pellets, Bioserve, Frenchtown, NJ) in ceramic cups (8.25
cm in diameter, 4.5 cm deep) filled with corncob bedding material.

A list of six pure odorants served as the odor cues (propyl butyrate,

ethyl acetate, anisole, ethyl isovalerate, furfuryl propionate, and

n-butyl glycidyl ether). A seventh odorant (1-butanol) was used as a

distractor stimulus that was never rewarded. In each case, a volume

of each odorant calculated to generate an equivalent vapor phase

partial pressure after dilution was mixed with 50 mL of mineral oil

(10 Pa, Cleland et al., 2002, 2009). A total of 10 mL of each odor-

ant solution was then mixed with 2 L of corncob bedding material

and stored in air-tight containers. For all training and testing proce-

dures, the odorants were presented one at a time, alongside an iden-

tical cup containing bedding scented with the distractor odor,

which was never baited.
Within each of the inactivation conditions described above,

half the rats were assigned to the baseline condition and the

FIGURE 1. Locations of the infusion cannulae in the dorsal hippocampus and medial pre-
frontal (prelimbic and infralimbic) cortex are shown on images adapted from (Paxinos and
Watson, 1998). Cannula placements for rats in the baseline condition are indicated by filled
circles, whereas placements for rats in the extra practice condition are indicated by open
diamonds.
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other half were assigned to the extra practice condition. Training
and testing took place in a single session incorporating all three
phases: training, extra practice (or a delay of equivalent dura-
tion), and testing. During training, all of the rats were given six
trials with each of the six odor cues, presented in an unpredict-
able sequence. For each trial, the cups containing the odor cue
with a buried reward and the distractor odor were placed into
the chamber, the divider was raised, and the rat was allowed to
approach the cups and dig until he retrieved the reward. For
rats in the extra-practice condition, three of the six odors were
designated P (practiced), and the other three were designated
NP (nonpracticed). Subjects in this group received four addi-
tional training trials with each P odor, but did not receive any
additional training with the NP odors. Rats in the baseline con-
dition were not given extra practice on any of the odors. The
extra practice trials required 5 min, so rats in the baseline condi-
tion were given a 5 min delay after training in order to produce
an equivalent delay before testing, which occurred immediately
thereafter. The test trials were identical to the training trials,
except that neither cup was baited. The amount of time the rat
spent digging in the unbaited cup containing the target odor
served as our measure of how well the rats remembered the
odor and its association with reward (Cleland et al., 2009). Dig-
ging times were measured with a stopwatch by an experimenter
blind to the rat’s condition. The rats were given four test trials,
two with P odors, and two with NP odors. The selection of the
test odors from the training list and the order of presentation of
the P and NP odors were counterbalanced across subjects. Each
rat in the baseline condition was yoked to a rat in the extra
practice condition for the selection of test odors, such that the
two groups were tested with identical odors.

Data Analysis

In order to correct for potential differences in perseverative
tendencies or overall responsiveness, the amount of time spent
digging in the distractor cup was subtracted from the time spent
digging in the test odorant for each trial. Thus, our digging
time score reflects how much more time the rats spent digging
in the target odor than in the distractor odor. Distractor effects
were minor: control rats spent 0.59 6 0.18 sec digging in the
distractor cups, mPFC inactivation rats spent 1.28 6 0.27 sec,
and HPC inactivation rats spent 0.18 6 0.06 sec. In each experi-
ment, our goal was to determine whether extra practice affected
memory for the odors (i.e., improved memory for the P odors
or impaired memory for the NP odors), relative to the baseline
condition which did not involve extra practice. We used Welch’s
t-tests to compare digging times for the practiced and nonprac-
ticed odors separately to the baseline condition, with Bonferroni
correction for two comparisons (i.e., a 5 0.025). For significant
outcomes, we report effect size (Cohen’s d).

Computational Modeling

We constructed a computational model of a representational
learning circuit to model the RIF effect. In this class of circuit,
neural representations of external stimuli are high-dimensional

and can be arbitrarily complex, yet retain quantifiable similarity
relationships with one another. The RIF effect in the model is
based on sideband suppression generated by each of these rep-
resentations—that is, representations generate “surround”
inhibition of similar (neighboring) representations in their
high-dimensional similarity space. Hence, training on some
items from a list will suppress memories of other items from
that list to the degree that they are similar to the trained items,
but will not suppress memories of dissimilar items (e.g., items
drawn from dissimilar lists or learned in a different context).
Note that we use the term “similarity” broadly to include not
only perceptual similarity but also similarities derived from
learned associations such as those formed when items are part
of the same learning experience, which might lead to retrieval
competition and interference. This conforms to experimental
observations in which memory for items drawn from different
categories was not impaired by the RIF effect (Anderson et al.,
1994). Extra training on half of the elements from a list of
odors therefore should actively impair memories for other
odorants from the same list that do not also receive additional
training, whereas parameter changes intended to simulate the
effects of hippocampal or mPFC inactivation should reduce or
eliminate the RIF effect, reflecting experimental data.

We used the NEST simulator (Diesmann and Gewaltig, 2001;
Gewaltig and Diesmann, 2007, http://www.nest-initiative.org)
and the PyNN model specification package (Davison et al.,
2008, http://neuralensemble.org/PyNN) to implement a network
of 100 leaky integrate-and-fire (LIF) pyramidal neurons (Fig. 2A;
Pyr) that received analogue excitatory input (specific to a given
odor cue) as well as global periodic inhibition in the gamma
band (40 Hz) generated by an oscillator process. Cue represen-
tations comprised spatial patterns of excitatory input to these
pyramidal neurons (temporal profiles of input were not manip-
ulated). This input generated action potentials in pyramidal
neurons that were phase-constrained to periods of disinhibi-
tion. Higher levels of input generated correspondingly
phase-leading action potentials within phases of declining inhi-
bition (phase or precedence code, Linster and Cleland, 2010;
Panzeri et al., 2010). Pyramidal cells delivered this spiking out-
put onto a layer of 100 output layer neurons (OLNs). Connec-
tivity between the pyramidal cell layer and the OLN layer was
pseudorandom and uniformly distributed with a 50% probabil-
ity of connection.

Pyr-to-OLN synapses were sensitive to pyramidal cell spike
timing according to a spike timing-dependent plasticity
(STDP) rule implemented as described in Linster and Cleland
(2010) (Fig. 2B, Table 1). Briefly, earlier pyramidal cell spikes
(preceding the evoked postsynaptic spike, if any) yielded
increased Pyr-to-OLN weights after conditioning, whereas later
Pyr spikes (following the OLN spike) progressively produced
lower, eventually negligible weights, thereby sparsening the
OLN-level representation.

To generate a metric in which greater neuronal activity levels
and sparser spatial representations in the OLN layer both
reflect greater learning, we measured learning as follows. A cue-
evoked barrage of phase-constrained Pyr spikes produced either
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zero or one spike per cycle in any given OLN. The mean spike
phase (in ms) of the activated OLN population was calculated
for each oscillation period, and the reciprocal of this mean
phase was used as the learning metric. Specifically, the strength-
ening of Pyr-to-OLN synapses produced an increased phase
lead in follower OLNs. Sparsening the OLN representation by
reducing the number of activated OLNs via learning also

generated an increased phase lead, as the most lagging OLNs
were the ones eliminated. Increased phase leads, corresponding
to increased values in the reciprocal mean spike phase in ms21,
indicate greater learning. The ordinates in Figures 3D–F
denote a reasonable range for values of this metric after sub-
stantial learning, corresponding to a difference in mean spike
times of roughly 1 ms.

Neural representations of odor cues consisted of 100-
dimensional vectors corresponding to the levels of input to the
100 pyramidal neurons. To generate a list of random high-
dimensional odor cue representations (HDRs) with consistent
statistical relationships (probability distributions of similarity),
we sampled 100 points from a sigmoidal distribution of unit
amplitude to generate a “source HDR.” To produce each of the
odorant stimulus HDRs used for training, we added Gaussian
noise to each point of the source HDR, set all resulting negative
values to zero, and scaled the distribution linearly so that the
maximum value was unity. Hence, each cue HDR was similarly
related to the source HDR and also consistently related to one
another. The source HDR itself was not used as a cue. The aver-
age similarity among the HDRs in a given list can be estimated
as the mean radius of a hypersphere containing all of the HDRs
in that list. The interrelatedness of the HDRs can be manipu-
lated by increasing or decreasing this radius, making the group
of HDRs less or more similar to one another, respectively. The
HDRs used for additional practice (P) in each simulation were
randomly selected, and 18 separate simulations were performed
and averaged together to comprise each figure.

RESULTS

RIF in Controls

Intact control rats showed robust evidence of the RIF effect
in the form of inhibited memory for the NP odors compared

TABLE 1.

Model Parameters

Control HPC lesion mPFC lesion

r 1 5 2.5

W1 0.5 0.5 0.1

W2 0.6 0.6 0.06

s1 5 5 5

s2 5 5 5

The r parameter denotes the relative similarity of cues on a list (i.e., the radius
of the hypersphere containing a family of HDRs) and hence their degree of
competitive overlap and sideband suppression. Values are scaled to control;
lower values represent higher similarity and stronger competition. The STDP
scale variables W1 and W2 determine the scale of weight increases and reduc-
tions (respectively) produced via spike timing-dependent plasticity (STDP);
together, they instantiate learning rate within the model. The STDP time con-
stants s1 and s2 are in ms; r and W are unitless. Other model parameters
(not shown) were unchanged across conditions.

FIGURE 2. Computational model features. A: Schematic of
the model. Input representations (cues, HDRs; see text) excite the
100-neuron population of spiking pyramidal neurons (Pyr; four
depicted) comprising layer 1 of the network. Oscillatory inhibitory
input (Osc; 40 Hz gamma) also is delivered to these same neurons,
shaping the timing of action potentials such that each Pyr neuron
fires either one or zero spikes per gamma oscillation, with greater
input excitation producing a corresponding phase lead within the
low-inhibition window. Pyr spikes excite output layer neurons
(OLNs; Layer 2) via plastic synapses that follow the STDP learn-
ing rule (Song et al., 2000, see text). The pattern of OLN activa-
tion comprises the output representation that is shaped by
learning. B: The spike timing-dependent plasticity rule. The
abscissa denotes the time difference between a presynaptic Pyr
spike and a postsynaptic OLN spike across a given synapse; if the
Pyr spike precedes the OLN spike, the time difference is negative
and the synapse is strengthened, whereas if the OLN spike pre-
cedes the Pyr spike, the time difference is positive and the synapse
is weakened. The amount of strengthening or weakening per cycle
depends on this spike time difference as well as on the absolute
vertical scale values W1 (for the positive wing of the rule) and
W2 (for the negative wing) and on the characteristic time con-
stants for each curve (s1, s2). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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with the baseline condition (t(30) 5 3.63, P< 0.001, d 5 1.09,
Fig. 3A). Importantly, the extra-practice rats were given the
same number of trials with the NP odors as were the rats in
the baseline condition with their odors; the only difference was
that rats in the extra-practice condition were given four addi-
tional training trials with the P odors. Thus, consistent with
previous studies in human subjects, extra practice with some
items from a study list of odors inhibited the retrieval of the
nonpracticed items on that list. Contrary to expectations, con-
trol rats did not show significantly stronger memories for the P
odors, relative to the baseline condition (t(30) 5 0.31,
P 5 0.76), suggesting that the initial six training trials were suf-
ficient to form asymptotically strong memories that were not
measurably strengthened by the four extra practice trials.

We simulated these results using a computational model of
a representational learning circuit (see Methods). In order to
match the rat training procedures, baseline learning was
achieved after training the simulated circuit with six presenta-
tions of each of six HDR stimuli in a pseudorandomized
order. Subsequently, the circuit was given four additional
training presentations with a randomly selected set of three
of the HDRs (the “P” HDRs), whereas the other three
HDRs (the “NP” HDRs) were not presented again. Under
control conditions, the P-type HDRs were not learned signif-
icantly better than baseline, because learning was nearly
asymptotic after the six baseline training trials (Fig. 3D, P vs.
baseline, t(34) 5 2.00, P 5 0.054). However, the additional
training significantly suppressed memory for the NP-type

FIGURE 3. Average digging duration in response to the test
odors is shown for control (A), hippocampal inactivation (B), and
mPFC inactivation groups (C). Digging durations (time spent dig-
ging in the test odor cup minus the time spent digging in the dis-
tractor cup, see Methods) are shown for rats in the baseline
condition and rats that were given extra practice trials, with
responses to the practiced (P) and nonpracticed (NP) odors shown
separately. Results from our computational model are shown for
the simulated controls (D), hippocampal inactivation (E), and
mPFC inactivation conditions (F). Parameter changes associated
with each inactivation condition are listed in Table 1. Ordinate

values are reciprocal mean spike phases (in ms21) measured in
output layer neurons (see Methods). For each plot, the practiced
and nonpracticed odors were compared with the baseline condi-
tion. Digging times for the nonpracticed odors were significantly
reduced only for the control experiment (A and D, *P < 0.025, see
Methods). Values were significantly increased for the practiced
odors only in the model of the mPFC inactivation (F). Digging
times for the practiced odors were numerically increased in the
rats with mPFC inactivation, relative to baseline, although this
difference did not reach our corrected alpha level of 0.025 (C,
#P 5 0.033). All other comparisons were not significant.
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HDRs relative to the baseline HDRs (NP vs. baseline,
t(34) 5 3.79, P< 0.001, d 5 2.22).

Effects of Hippocampal Inactivation on the RIF
Effect

Temporary inactivation of the dorsal hippocampus com-
pletely blocked the RIF effect. Specifically, digging times for
the NP odors were not reduced relative to the baseline condi-
tion (t(14) 5 20.14, P 5 0.89) and digging responses to the P
odors were not elevated relative to the baseline condition
(t(14) 5 20.55, P 5 0.59, Fig. 3B). That is, the performance of
rats with hippocampal inactivation was unaffected by the extra
practice trials.

Items are strongly associated with the context in which they
occur, and the hippocampus is involved in this associative pro-
cess (e.g., Butterly et al., 2012). Accordingly, we treated con-
textual associations as shared features of the HDRs in our
model and simulated hippocampal inactivation by reducing
context-based feature similarity (i.e., by decreasing the average
similarity of the HDRs). Specifically, the radius of the hyper-
sphere enclosing the six randomly generated HDRs was
increased by a factor of five (Table 1, see Methods), such that
the overlap and interactions among HDRs were substantially
reduced. As a result, the NP representations were not signifi-
cantly suppressed by the additional training of the P items rela-
tive to the baseline (Fig. 3E, P vs. baseline, t(34) 5 0.49,
P 5 0.63). As in the control group, asymptotic learning of the
baseline items prevented significant additional learning and
memory for the P items was not improved by additional train-
ing relative to the baseline HDRs (NP vs. baseline,
t(34) 5 1.39, P 5 0.17).

Effects of mPFC Inactivation on the RIF Effect

Temporary inactivation of the mPFC also blocked the inhib-
itory component of the RIF effect (Fig. 3C). Rats with mPFC
inactivation did not exhibit reduced memory for the NP odors
relative to baseline (t(14) 5 0.05, P 5 0.96). Interestingly, the
rats showed some evidence of improved memory for the P
odors compared with the baseline condition, but this effect did
not achieve significance with our Bonferroni-corrected alpha
level of 0.025 (t(14) 5 2.36, P 5 0.033, d 5 0.28). Thus, mPFC
inactivation may have produced a more selective impairment in
the inhibition of the NP items than hippocampal inactivation.
The apparent increase in overall digging time is discussed
below.

Although the PFC is thought to influence memory in a vari-
ety of tasks (e.g., Smith et al., 1995; Lee and Solivan, 2010),
the specific mechanism by which the PFC participates in the
RIF effect is not known. One possibility is that the PFC
responds to retrieval conflict by sending feedback to the mem-
ory network in order to dynamically enhance sideband suppres-
sion and thereby achieve optimal inhibition of potential
competitors. Additionally, recent evidence indicates that overall
learning is delayed by mPFC inactivation (Peters et al., 2013).
Therefore, we simulated mPFC inactivation by reducing the

STDP-mediated learning rate (i.e., reducing the values of W1

and W2), and by modestly decreasing the sideband overlap
(increasing r, Table 1). These manipulations produced a pat-
tern of results very similar to rat behavioral data (Fig. 3F). Spe-
cifically, they enabled additional practice to improve cue
memory above baseline (P vs. baseline, t(34) 5 3.70, P< 0.001,
d 5 2.19; increasing W1 to 0.2 rendered this difference non-
significant), whereas also eliminating the inhibitory component
of the RIF effect (NP vs. baseline, t(34) 5 1.55, P 5 0.124).

Group Differences in Digging Response Rates

The key question tested in these experiments was whether
additional practice with some odors from the list impaired
memory for the nonpracticed odors in control rats and in rats
with hippocampal or mPFC inactivation. We used odor-cued
digging responses to assess memory and showed inactivation-
induced changes in responding to the NP odors in control ani-
mals. However, hippocampal and PFC lesions have also been
shown to produce a nonspecific increase in behavioral responses
(i.e., perseverative responding, Mishkin, 1964; Whishaw and
Tomie, 1997). To examine this, we submitted the baseline
response rates for control rats and rats in the hippocampal and
mPFC inactivation conditions to a one-way ANOVA
(F[2,29] 5 9.69, P< 0.001). Post hoc comparisons using
Tukey’s honestly significant difference showed that inactivation
of the mPFC was associated with elevated digging times com-
pared with controls (P< 0.005). The digging times of rats
given hippocampal inactivation were not significantly different
from controls (P 5 0.31). Thus, in addition to blocking the
inhibitory component of the RIF effect, mPFC inactivation
caused perseverative responding. We did not include persevera-
tion in our simulation, so Figure 3F does not show the globally
elevated response levels observed in rats with mPFC inactiva-
tion (Fig. 3C).

DISCUSSION

Like human subjects (Anderson et al., 1994), rats exhibited
a robust RIF effect in which practice with some items from a
study list inhibited the retrieval of the nonpracticed items.
These results suggest that RIF is a widespread phenomenon,
occurring in many learning situations and in different species,
and they join a growing body of research indicating that inhib-
itory processes are an important aspect of memory function.
We suggest that these inhibitory processes play a critical role in
resolving interference. Interference is a critical problem for
high volume memory systems, and one mechanism for resolv-
ing interference is to inhibit the retrieval of potentially compet-
ing memory targets. Previous neuroimaging studies of human
subjects have suggested an involvement of the PFC and the
hippocampus in these processes (Anderson and Green, 2001;
Wimber et al., 2008). The current results confirm this involve-
ment via targeted temporary inactivation of each of these areas,
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demonstrating that the RIF effect depends on the integrity of
both the mPFC and the hippocampus.

The behavioral tasks used to evoke the RIF effect in this
new animal model have potentially important procedural dif-
ferences as well as similarities when compared to the classic
human studies of RIF. In typical human studies (e.g., Anderson
et al., 1994), subjects are trained on category-exemplar pairs
(e.g., FRUIT-apple) and there is no explicit reinforcement. In
our studies, rats were trained to associate odor cues with a bur-
ied reward. Because the baseline and NP odors had identical
reinforcement histories, differential reinforcement of these cues
cannot account for the current results. However, we cannot be
certain that the reduced responses to the NP items observed in
the animal and human tasks are supported by the same under-
lying mechanism. Nevertheless, the same adaptive outcome is
achieved in each case: the less-frequently encountered items are
inhibited in a manner that facilitates retrieval of the more fre-
quently encountered items. Moreover, observation of practice-
induced inhibition across many different kinds of memory (see
Introduction, Ciranni and Shimamura, 1999; MacLeod, 2002;
Johnson and Anderson, 2004; Veling and van Knippenberg,
2004; Spitzer and Bauml, 2007) supports the idea that the RIF
effect is a general function relevant to many kinds of memory.

In human subjects, the RIF effect seems to depend on the
subject actively engaging in a retrieval search. For example, a
robust RIF effect is seen when subjects are given partial cuing
of the retrieval target (e.g., FRUIT-a_____) during the practice
trials, but not when additional training trials are presented
with the target item provided (e.g., FRUIT-apple; Anderson
et al., 2000). Indeed, such additional training trials are some-
times used as a control condition that is not expected to pro-
duce RIF (e.g., Johansson et al., 2007). In contrast, additional
training trials produced significant retrieval inhibition with our
procedure. This apparent discrepancy may be explained by the
sequence of events in our trials. During each trial, the rats
approach the cup, investigate the odor and then dig for the
reward, which often takes several seconds. Presumably, the rat
retrieves the odor-reward association during this time and this
supports the digging response, because the rats generally do
not dig in the unrewarded distractor cup. Thus, each trial
likely involves a significant retrieval component as well as con-
stituting an additional reinforced training trial. In contrast,
additional training trials in humans involve the simultaneous
presentation of the cue and the target (e.g., FRUIT-apple) and
there is little opportunity for the subject to engage in retrieval.
Thus, the extra practice trials in our procedure likely involve a
retrieval component that is not present in additional training
trials used with human subjects.

Although our control subjects showed significant inhibition
of the memory for the nonpracticed odors, they did not show
the commonly observed improvement in memory for the prac-
ticed items, relative to the baseline condition (Fig. 3A). This
result suggests that in control rats, the initial six training trials
may have been sufficient to form relatively strong memories
which were not measurably strengthened by the additional four
practice trials. Consistent with this interpretation, previous

experience in our laboratory suggests that rats can reliably
remember a rewarded odor after only three or four training
trials.

Rats given temporary inactivation of the hippocampus did
not show enhanced memory for the practiced items nor did
they show inhibition of memory for the nonpracticed items.
The fact that the muscimol rats responded to the test odors as
much as control rats, and much more strongly than they
responded to the distractor odor, suggests that they did not
simply forget the odors. Rather, the rats given hippocampal
inactivation were insensitive to the inhibitory effects of the
extra practice trials. Widely accepted theoretical accounts sug-
gest that hippocampal encoding processes are rapid and auto-
matic, whereas learning in extra-hippocampal systems proceeds
through the slow accumulation of information across trials
(e.g., McClelland et al., 1995). However, our results suggest
that hippocampal processing may also be sensitive to the subtle
effects of additional training trials on memory retrieval.

So why does the hippocampus play a role in the RIF effect?
The answer may lie in the well-known hippocampal role in
processing contextual information (for review see Smith, 2008).
As discussed above, the RIF effect is thought to be triggered by
retrieval competition. Although the odor cues used were not
chemically or perceptually similar (i.e., they do not cross-gener-
alize), they were related by virtue of being presented within the
same distinctive training context and rats are known to sponta-
neously associate odors that are presented together (Devito and
Eichenbaum, 2011) or within the same environment (Butterly
et al., 2012). Within this interpretation, hippocampal process-
ing likely resulted in the association of each odor with the
training context, such that any cue that evoked the memory of
one odor also would have activated memory representations of
the other odors, resulting in retrieval competition. The loss of
contextual associations in rats with hippocampal inactivation
would result in reduced retrieval competition and, conse-
quently, weaker suppression of the nonpracticed odors (see also
Norman et al., 2007). This interpretation was supported by
the results of our computational model. Hippocampal inactiva-
tion was modeled as a reduction in the average contextual simi-
larity among cues, mediated by an increased hypersphere radius
during cue (HDR) generation (see Methods). This reduction
in cue competition resulted in a failure to suppress the non-
practiced items, just as hippocampal inactivation did in our
rats.

Inactivation of the mPFC completely blocked the inhibitory
effect of the extra practice trials and memory for the practiced
odors was not significantly better than for the baseline odors.
Inactivation of the mPFC also caused an overall increase in
responding during the memory test. This overall increase may
simply have been due to behavioral perseveration, which is
known to result from PFC lesions (Mishkin, 1964). However,
perseveration alone cannot explain the selective loss of inhibi-
tion, relative to baseline, seen in rats with mPFC inactivation,
and we have shown that this inactivation procedure produces
severe memory deficits that cannot be attributed to persevera-
tion (Peters et al., 2013). Aside from perseveration, the effects
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of hippocampal and mPFC inactivation were essentially equiva-
lent. However, theoretical considerations suggest that the
underlying causes of the impairment may have been different
in the two regions. Whereas the hippocampal impairment may
have been due to altered contextual memory processes, the
PFC is known to exert inhibitory control over memory
retrieval (Anderson and Green, 2001; Depue et al., 2007;
Wimber et al., 2008).

The loss of inhibition in the rats with mPFC inactivation is
consistent with studies showing that PFC activity is correlated
with stronger retrieval inhibition (Kuhl et al., 2007; Wimber
et al., 2008), suggesting that the PFC monitors ongoing
retrieval processes and resolves conflict by suppressing the
retrieval of inappropriate memories. Retrieval conflict arises
when several representations are activated without a single
clearly differentiated retrieval target emerging. We suggest that
the PFC responds to such conflict by sending feedback to the
memory network to boost sideband suppression such that the
strongest retrieval target is maintained and its chief competitors
are more strongly inhibited. This includes competitors that are
perceptually similar and those with similarity due to shared
context or other contributing factors. Further supporting this
interpretation is a recent study showing that mPFC input to
the hippocampus via the nucleus reuniens increases the specific-
ity of memories, while inactivation of the same pathway causes
broader generalization (Xu and Sudhof, 2013), the latter of
which has been associated with reduced learning (Cleland
et al., 2009). Simulations performed with our computational
model are consistent with these interpretations. We modeled
mPFC inactivation as a reduction in sideband suppression
(increased value of r ) along with a reduction in the STDP
learning rate (reduced values of W1 and W2, Table 1). Note
that the reduced sideband suppression could also arise from a
reduction of mPFC effects on hippocampal function.

Our simulations modeled the mechanisms underlying the
RIF effect as sideband suppression—essentially similar to those
underlying contrast enhancement in sensory systems. Specifi-
cally, both mechanisms regulate the deployment of competitive
inhibition according to the similarity between representations,
with the important caveat that cue similarity in the present
model is not constrained by sensory metrics: quantitative simi-
larity relationships between cues in the model are arbitrary
(and of arbitrarily high dimensionality) and incorporate
feature-similarity, cue familiarity, contextual relationships, and
any other features of cue presentation or history that contribute
to perceived similarity relationships among cues. Our simula-
tions of lesion effects on rat behavior suggest that the hippo-
campus and mPFC may modulate retrieval processes by
regulating these sideband suppression mechanisms and their
associated learning processes. The underlying algorithm hence
may reflect a common neural mechanism in the brain for the
management of representations, whether arising from basic sen-
sory processes or from complex cognitive functions.

The RIF phenomenon and related problems in the control
of cortical inhibition have been modeled by others, emphasiz-
ing data from human subjects. One recent model of inhibitory

control presents the PFC as delivering sophisticated, competi-
tive inhibition of other neocortical regions by identifying
favored representations and delivering inhibition so as to bias
the computational outcome toward these favored representa-
tions (Munakata et al., 2011). In the model, this was achieved
by a specific activation of favored representations coupled with
a diffuse inhibition of nonactivated representations. This model
is consistent with research suggesting that PFC biases competi-
tion by selectively activating the contextually appropriate
response (e.g., Miller and Cohen, 2001; Egner and Hirsch,
2005), and also with our recent findings that the mPFC is not
limited to delivering inhibition, but is also involved in promot-
ing memory retrieval (Peters et al., 2013). However, it is not
clear that this model can produce the specific inhibition of
strong retrieval competitors that is a hallmark of the RIF effect
(Anderson et al., 1994).

A second computational model, specifically designed to rep-
licate the complex characteristics of the RIF effect as reported
in human subjects, has been presented by Norman et al.
(2007). It shares several features with our present model,
including an overall strategy of selectively suppressing the
strongest competitors, a learning framework in which learning
results in memory representations becoming progressively more
distinct from one another in order to reduce retrieval competi-
tion, and a mechanistic dependence on a global, oscillating
inhibitory input to all principal neurons (albeit in the theta fre-
quency band rather than the gamma band). However, other
features of the two models are quite different. The Norman
et al. (2007) model is a rule-based artificial neural network
that incorporates certain relevant priors into its design, such as
a global awareness of whether the oscillating level of inhibition
is above or below a baseline level, which qualitatively changes
the operative learning rule. In contrast, our model is a LIF net-
work with fully localized synaptic plasticity rules and no global
state-dependent singularities. The Norman et al. (2007) model
is a four-part associative memory network in which representa-
tions are in danger of triggering one another via shared excita-
tory links among neurons commonly activated by both
representations; RIF acts to solve this problem by weakening
the problematic links, damaging the integrity of the competitor
representation in the process. Our present model is a two-layer
feed-forward representational learning network, in which
repeated representational activation of Layer 1 (Pyr) neurons
entrains a representation-specific pattern of Layer 2 (OLN)
neurons via a STDP rule (it is the Layer 2 representation that
is durably affected by learning in this model). All cue represen-
tations are strengthened by repeated presentation of their cues
during initial training, and weaken one another during this
phase because weakly activated Pyr neurons will have their out-
put synapses weakened owing to STDP. During subsequent
“extra practice” with the P cues, the weakly activated elements
of competitor (NP) representations will continue to be weak-
ened, but without the opportunity to reassert themselves via
presentation of their primary cues. Notably, the P cues are in
competition with one another as well, but gain more weight
via direct learning than they lose via competition. Ultimately,
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in this model, cues that remain important (i.e., continue to be
presented) while competing strongly with one another will
become progressively more distinct from one another in Layer
2 (cf. Weinberger, 2007; Cleland et al., 2009; Linster and Cle-
land, 2010), eventually minimizing or eliminating this retrieval
competition. Our model demonstrates that a relatively simple
algorithm based on the principles of competitor suppression
can reproduce the RIF effect—irrespective of whether it is
implemented in semantic or episodic memory networks—and
can replicate the observed effects of PFC and hippocampal
inactivation.

Our results join a growing body of research showing that
the hippocampus and PFC are involved in resolving mnemonic
interference. Neuroimaging studies with human subjects have
shown that the PFC and hippocampus both contribute to the
RIF effect (Anderson and Green, 2001; Wimber et al., 2008),
and many rodent studies have shown that these structures work
cooperatively in various learning and memory tasks (Lee and
Solivan, 2008; Navawongse and Eichenbaum, 2013; Xu and
Sudhof, 2013). In previous studies, we have shown that inacti-
vation of either the mPFC or hippocampus impairs the ability
of rats to resolve proactive interference (Butterly et al., 2012;
Peters et al., 2013). High levels of interference are characteristic
of many tasks known to be sensitive to hippocampal damage.
For example, the hippocampus is required for transitive infer-
ence (Dusek and Eichenbaum, 1997), transverse patterning
(Dusek and Eichenbaum, 1998), and cue sequence learning
(Agster et al., 2002; Fortin et al., 2002), all of which require
subjects to select a cue that previously has been rewarded on
some trials but not on others, resulting in substantial interfer-
ence. The PFC has also been directly implicated in resolving
interference in humans and rodents (Incisa della Rocchetta and
Milner, 1993; Peters et al., 2013). The PFC role in resolving
interference is consistent with a number of accounts of PFC
function that emphasize its role in the top-down control of
memory retrieval processes (Anderson and Green, 2001; Bunge
et al., 2004; Munakata et al., 2011). Additional research will
be needed to investigate the specific interactions of the hippo-
campus and PFC in resolving interference.
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