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Abstract

The olfactory bulb transforms not only the information content of the primary sensory repre-

sentation, but also its underlying coding metric. High-variance, slow-timescale primary odor

representations are transformed by bulbar circuitry into secondary representations based on

principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale

for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently

integrate olfactory sensory information into the temporally regulated information networks of

the central nervous system. To understand this transformation and its integration with interareal

coordination mechanisms requires that we understand its fundamental dynamical principles.

Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate

that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron net-

work gamma (PRING), best captures the diversity of physiological properties exhibited by the

olfactory bulb. Most importantly, these properties include global zero-phase synchronization in

the gamma band, the phase-restriction of informative spikes in principal neurons with respect

to this common clock, and the robustness of this synchronous oscillatory regime to multiple

challenging conditions observed in the biological system. These conditions include substantial

heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of

uncorrelated background activity among principal neurons, and spike frequencies in both prin-

cipal neurons and interneurons that are irregular in time and much lower than the gamma fre-

quency. This coupled cellular oscillator architecture permits stable and replicable ensemble

responses to diverse sensory stimuli under various external conditions as well as to changes in

network parameters arising from learning-dependent synaptic plasticity.

Author summary

The mammalian olfactory bulb responds to odor stimulation by generating fast oscilla-

tions in its electrical field potential. Such oscillations are indications that a substantial

number of principal neurons in the olfactory bulb are coordinating their activities in time,

which often means that their action potentials are synchronized, or partly synchronized,

such that the pattern of small differences in their spike times contains olfactory sensory
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information. We are interested in the mechanisms by which olfactory bulb circuitry can

transform sensory information from the temporally unsophisticated spike rates of pri-

mary sensory neurons into this sophisticated cortical format. We present a biophysically

explicit, multiscale dynamical model of the olfactory bulb network that generates these

oscillations. The elements of this model are designed to adhere to experimental findings

from individual neurons, membrane currents, and synapses as well as the functional net-

work. Together, these elements generate gamma oscillations exhibiting the full range of

properties of those in the biological system. We show that these dynamics arise from an

inhibition-coupled oscillator framework, a type of dynamical system with some estab-

lished mathematical properties. This finding enables us to understand how the olfactory

system translates sensory information for distribution in the central nervous system, and

how different areas of the brain can mechanistically coordinate with one another so as to

regulate the flow of sensory information to appropriate target structures.

Introduction

The mammalian main olfactory bulb (OB) plays a central role in processing and relaying olfac-

tory information from the primary sensory epithelium to subcortical and cortical areas [1].

This processing transforms the information content of the primary representation, but also

has been proposed to transform the underlying physical metric by which this information is

encoded, from rate-coded population activity organized on a respiration timescale to a spike

timing-based representation aligned to a faster timescale that is determined by the intrinsic

dynamics of cortical neural ensembles [2]. Odor stimulus-evoked activation of the OB gener-

ates fast, gamma-band (30–80 Hz) local field potential (LFP) oscillations that are thought to be

largely synchronous across the extent of the OB [3]. Such oscillations reflect the tightly con-

strained synchronization of a large neural assembly, which in the OB (and its arthropod ana-

logues) has long been believed to play some role in the encoding and processing of olfactory

information [4–14].

It is generally accepted that OB gamma oscillations are intrinsic, and mediated by a fast

negative feedback loop formed between principal output neurons (mitral and projecting tufted

cells; MCs) and a class of inhibitory GABAergic interneurons (granule cells; GCs), interacting

via dendrodendritic synapses in the external plexiform layer (EPL) of the OB (Fig 1A; [15–

25]). However, the underlying mechanisms generating these oscillations remain elusive. Sev-

eral different dynamical architectures have been proposed or assumed to mediate OB gamma

oscillogenesis. First, a pyramidal-interneuron network gamma (PING) mechanism is often assumed

[22, 26], inspired by the anatomical predominance of the excitatory-inhibitory reciprocal synapses

that constitute the EPL network. Early theoretical modeling of OB network dynamics also was

based on this anatomical architecture [27]. However, PING networks do not incorporate cellular

resonance properties, such as the intrinsic subthreshold oscillations (STOs) of MCs [28]. Second, an

interneuron network gamma (ING) mechanism has been theoretically proposed [29, 30]; however,

this mechanism relies on inhibitory interactions among granule cells, which were intimated by early

EEG work [16] and by the discovery of GABAergic synaptic inputs onto granule cells [31] but since

have been ruled out. The PING and ING architectures have been reviewed by [32]. Third, OB net-

work oscillations have been proposed to be driven directly by the intrinsic subthreshold dynamics

of MCs [33]. This model highlighted the dynamical capacities of intrinsic MC subthreshold oscilla-

tions (STOs; [28]) and resolved some limitations of the PING architecture regarding observed

OB dynamics (e.g., it permitted stable gamma oscillation frequency in the presence of fluctuating
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afferent drive). However, this model required substantially higher-frequency MC STOs than have

been experimentally described, and also was not clearly compatible with the sparse spiking behavior

of GCs [34]. Fourth, a hybrid network based on inhibition-coupled intrinsic cellular oscillators has

been proposed [35], in which the intrinsic STOs of MCs are transiently coupled during afferent acti-

vation into a coherent oscillatory network [36] paced by GC-mediated inhibitory synaptic inputs

that periodically reset the slower MC STOs. (Pulsed inhibitory inputs, including shunting inhibition,

have been demonstrated to effectively reset MC STOs [28, 37–39]). During these active epochs, the

network dynamics exhibit key PING-like properties (e.g., the population oscillation frequency

depends on the decay time constant of the GABA(A) receptor conductance), but they also retain a

dependence on the slower STO dynamics of mitral cells even when the STO frequency itself is

superseded by the network oscillation. This dynamical mechanism, pyramidal resonance interneu-

ron network gamma (PRING), is consistent with a broad range of experimental data and is modeled

here.

It is important to clearly understand the specific dynamical mechanisms underlying OB

field oscillations, for several reasons. These oscillations are likely to reflect the re-encoding of

afferent odor information into timing-based representations for distribution to multiple post-

bulbar cortical and subcortical structures [40]. Therefore, in order to understand the forma-

tion and information content of these secondary representations, the dynamics of their

creation must be clear. Moreover, ascending inputs from the anterior olfactory nucleus and

piriform cortex, among other structures, must be integrated into this dynamical framework.

Piriform cortical inputs, in particular, are understood to alter bulbar dynamics, transiently

transforming the OB’s intrinsic gamma oscillations into slower beta-band oscillations coherent

with those of the piriform cortex [13, 41–44]. To understand how these ascending inputs are

Fig 1. Schematic representation of OB network connectivity and model structure. A: Schematic representation of dendrodendritic synaptic connectivity

among MCs, PGCs, and GCs. Reciprocal dendrodendritic synaptic connections exist between the MC tuft and PGC spines, and between the MC lateral

dendrite and GC spines. GL: glomerular layer; EPL: external plexiform layer. B: Spatial localization of MCs and GCs across the two-dimensional toroidal

surface of the model OB (1 mm × 1 mm).

https://doi.org/10.1371/journal.pcbi.1005760.g001
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integrated into the secondary odor representation requires a correct, mechanistic model of

bulbar gamma oscillogenesis and its subversion by piriform cortical activity. Finally, field

potential oscillations at many different characteristic frequencies are found all over the brain,

often interacting within particular neural structures [45] and potentially serving to select and

route specific information between coherently activated brain regions [46]. Elucidation of the

detailed mechanics of oscillations and their transitions in the OB and its associated networks

hence also will pertain to broader questions surrounding interareal communication mecha-

nisms in the brain.

To address this question, we developed a conductance-based, dynamically detailed biophys-

ical model of the OB network. The present model is based on our earlier two-layer model of

cholinergic neuromodulation in the OB [25], but embeds these glomerular layer and interco-

lumnar EPL computations within an explicit spatial framework. The results from this model

favor the PRING mechanism described above [35], and demonstrate that this inhibition-cou-

pled cellular oscillator architecture supports the diverse phenomena observed in OB neuro-

physiological recordings. These phenomena include (1) patterned spiking activity in MCs and

GCs that both is broadly heterogeneous and occurs at lower frequencies than the population

rhythm, (2) tolerance to a wide range of afferent MC excitation levels, which is important for

mediating the representation of different odor qualities, (3) tolerance for substantial changes

in MC-GC synaptic weights, which underlie intrinsic odor learning within the OB [47–49], (4)

the broad coherence of gamma-band oscillations across a physically extensive network despite

the incoherent activity of some neurons within that network, (5) the phase-constraining of

spikes within each cycle of the gamma oscillation [10, 13], and (6) the persistence of LFP

gamma oscillations at consistent frequencies despite sparse network connectivity (connection

probability p = 0.3 between MCs and GCs) and sharply heterogeneous afferent activation lev-

els. The explicit, multiscale nature of this dynamical model further enables the elaboration,

explanation, and experimental testing of the underlying mechanistic details that may underlie

these observed physiological phenomena.

Results

Odor stimulation induces broadly coherent gamma oscillations across

the OB network

Stimulation with simulated odorants induced gamma oscillations that were coherent across

the entire OB network. Simulated odorants comprised heterogeneous levels of input delivered

to the 25 MC/PGC pairs; each MC fired at a different mean rate corresponding to the strength

of its afferent input (including feedforward inhibition from its associated PGC; Fig 2A). The

mean MC firing frequency in response to odor stimulation was 14 Hz (min = 4 Hz; max = 38

Hz; standard deviation (SD) = 9.8 Hz). Despite these heterogeneous firing rates, a strong and

broadly coherent oscillation emerged in the gamma band (32.4 Hz, Fig 2B), consistent with in
vitro recordings from olfactory bulb [19, 35]. Individual MCs responded in a mixed mode,

usually spiking at mean frequencies substantially below the underlying STO frequency, but

with odor-evoked spikes phase-constrained to the underlying sLFP oscillation, as observed

experimentally [10, 13]. Moreover, systemwide coherence was maintained; voltage timeseries

depictions of different pairs of MCs confirmed that the STOs of different MCs were synchro-

nized with one another (Fig 2C, top panel), MC spikes were synchronized with STOs from

other MCs (Fig 2C, bottom panel), and MC spikes were also substantially synchronized with

spikes from other MCs (Fig 2D1 and 2D2). GC subthreshold voltages also fluctuated rhythmi-

cally and were well synchronized with one another (Fig 2E1), as were GC spikes (Fig 2E2),

despite GCs’ low mean firing rates (4.6 Hz). In contrast, no gamma-band synchrony was
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Fig 2. Odor stimulation induces gamma oscillation in the 2D OB model. A: Steady-state OSN input intensities (top) and odor-evoked firing rates

(bottom) of all 25 mitral cells. B: Simulated LFP (top) during odor presentation, with autocorrelation (middle) and frequency power spectrum (bottom). C:

Voltage responses during odor presentation of a pair of MCs exhibiting STOs along with sparse spikes (top) and another pair of MCs with one exhibiting

dense spiking and the other sparse spiking with ongoing STOs (bottom). D: MC population spikes exhibit gamma synchrony. D1: Voltage responses of two

MCs exhibiting mixed STOs and spikes (top) and another two MCs exhibiting dense spiking activity (bottom) during odor presentation. D2: Spike raster plot

of MC population activity. The red arrow designates the onset of odor input. D3: MC population activity (top) with frequency power spectrum (bottom). Bin

width is 5 ms and all MC spikes are summed in each bin. E: GC population spikes exhibit gamma synchrony. E1: Voltage responses of two typical pairs of

GCs during odor presentation. E2: Spike raster plot of GC population activity. The red arrow designates the onset of odor input. E3: GC population activity

Coupled-oscillator model of olfactory bulb gamma oscillations
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observed in the subthreshold voltage fluctuations (Fig 2F1) or spiking activity of PGCs (Fig

2F2). Population spike histograms of MCs, GCs and PGCs with corresponding frequency

power spectra are shown in Fig 2D3, 2E3 and 2F3 respectively. The population spiking activi-

ties of both MCs and GCs exhibited gamma rhythmicity, and the frequency was the same as

that measured from the sLFP (32.4 Hz; Fig 2D3 and 2E3). By comparison, no rhythmicity was

observed in the PGC population spike histogram, and the frequency power spectrum was flat

(Fig 2F3).

Examined in aggregate, MC spikes were phase-constrained within the common, coherent

gamma cycle of the OB network. The majority of MC spikes were evoked near the crest of the

oscillatory sLFP (Fig 3A). GC spikes also were phase-constrained within the gamma cycle,

occurring predominantly during the descending phase of the sLFP (Fig 3B). In contrast, PGC

spikes were not phase-constrained, but were distributed uniformly across the gamma oscilla-

tion cycle (Fig 3C).

Because of the tight phase-locking between MC/GC spikes and the sLFP cycle, the gamma

rhythm also was evident in MC/GC population spiking activities (Fig 3D). The tightly alternat-

ing relationship between MC and GC population spiking, but not PGC spiking, suggested that

this temporal delimiting of MC activity arose from effective feedback inhibition delivered by

granule cells. To illustrate this point, we plotted the voltage traces of a weakly-activated MC

and a strongly-activated MC against their respective cumulative GC-mediated GABAA con-

ductances (Fig 3E). The weakly-activated MC STO depolarized directly as its inhibitory con-

ductance decayed (Fig 3E, upper panel) and the strongly-activated MC fired only after release

from inhibition (Fig 3E, lower panel). Moreover, the inhibitory conductance increased again

directly following the evocation of MC spikes, initiating the next excitation-inhibition cycle.

Sufficiently strong inhibitory GC input also effectively reset the phase of MC STOs (Fig 3E,

upper panel, arrows), consistent with experimental observation and earlier cellular models [28,

37–39]. In principle, such resets erase the history imposed by longer-timescale internal dynam-

ics, thereby enabling afferent input levels across the MC population to determine the depolari-

zation rates in each MC from a common starting state, potentially governing MC spike phase

as well as spike probability [39, 50]. Moreover, recurrent resets also serve to supersede the

intrinsic frequency of MC STOs, enabling the network to oscillate at a frequency faster than

that generated by intrinsic STO dynamics [35]. In aggregate, these reciprocal interactions

between MCs and GCs synchronized MC internal dynamics and MC spikes, incorporating

them into a coherent gamma oscillation in which MC spikes were reliably phase-constrained

with respect to the common oscillatory sLFP of the network (Fig 3F; [10, 13]).

Functional computations in the olfactory bulb are generally independent of the physical

distance between columns [2, 51–54], though their underlying biophysical mechanisms often

have proximity-dependent properties. We therefore asked whether the distance-dependent

spike propagation delays along MC lateral dendrites were sufficiently heterogeneous to impair

the global coherence of gamma oscillations across the OB circuit. To visualize the propagation

delay as a function of distance, the membrane potentials of a representative MC (MC[2][2])

were recorded from the soma and from the locations of three reciprocal synapses distributed

along the lateral dendrite (at 80 μm, 235 μm, and 500 μm from the soma; Fig 4). These three

synapses connected, respectively, to an adjacent GC (GC[5][4]), a GC connecting near the

middle of the lateral dendrite (GC[6][3]), and a GC connecting at the end of the lateral

(top) with frequency power spectrum (bottom). Bin width as in D. F: PGC population spikes do not exhibit gamma synchrony. F1: Voltage responses of two

typical pairs of PGCs during odor presentation. F2: Spike raster plot of PGC population activity. The red arrow designates the onset of odor input. F3: PGC

population activity (top) with frequency power spectrum (bottom). Bin width as in D.

https://doi.org/10.1371/journal.pcbi.1005760.g002
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Fig 3. MC and GC spikes, but not PGC spikes, are phase-constrained within common gamma cycles. A: Distribution of MC spike phases with

respect to sLFP oscillations. B: Distribution of GC spike phases with respect to sLFP oscillations. C: Distribution of PGC spike phases with respect to

sLFP oscillations. D: Spike timing histograms of MCs (upper) and GCs (bottom). Bin width is 5 ms and all MC/GC spikes are summed in each bin. Vertical

lines accentuate the alignment of spike time distributions. E: MC STOs with associated cumulative GC-mediated GABAA synaptic conductance (top) and

MC spikes with associated cumulative GC-mediated GABAA synaptic conductance (bottom), during an odor presentation. The vertical black arrows

indicate STO phase resets generated by GABAergic input. F: Synchronization of MC STOs with the sLFP. The MC voltage was raised by 80 mV in E and

60 mV in F for display purposes.

https://doi.org/10.1371/journal.pcbi.1005760.g003

Fig 4. Propagation delay of MC action potentials along the lateral dendrite. A: MC membrane voltages recorded at the soma and three different

locations on the lateral dendrite (80 μm, 235 μm and 500 μm from the soma). B: Expanded view of the spike propagation delay along the lateral dendrite.

https://doi.org/10.1371/journal.pcbi.1005760.g004
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dendrite (GC[0][1]). Subthreshold activity in the MC dendrite was slightly hyperpolarized as

the recording site progressed away from the soma, but spikes propagated at essentially full

amplitude (Fig 4A). Spike propagation was rapid, with less than 1 ms delay from the soma to

the end of the 500 μm dendrite (Fig 4B), suggesting that heterogeneous spike propagation

delays would have little effect on network synchronization. This reflects the experimental

observation that spikes fully propagate along a MC lateral dendrite with little delay (Fig 2 in

[55]), and is consistent with previous computational work in which spike backpropagation

along MC lateral dendrites activates granule cells independently of distance [56].

Mitral cell STOs enhance network synchronization

It has been proposed that gamma oscillations in the OB depend on MC STOs [28, 33]; how-

ever, in the PING framework, the pyramidal (excitatory) neurons generally do not exhibit res-

onance. We therefore asked whether and how MC STOs contribute to the robustness, power,

and regularity of gamma coherence and spike synchronization in the active OB network. To

investigate this, we first removed STOs from model MCs and examined the effect of this

change on network dynamics. Specifically, STOs were eliminated by replacing the persistent

sodium current (INaP) in all MCs of the network with ohmic cation currents scaled to maintain

the same MC firing rates under the same current injection levels (Fig 5A and 5B; [39]). The

cation current was modeled as ICAT = gCAT(v−ECAT), where gCAT = 0.26mS/cm2 and ECAT = 0

mV. Under this manipulation, the power and regularity of odor stimulus-induced network

gamma were substantially reduced and sLFP oscillations became less coherent, as evidenced

by reduced persistence in the autocorrelogram and a lower, flatter peak in the power spectrum

(compare Fig 5C with Fig 5D). An examination of membrane potential timeseries from two

pairs of MCs revealed that, although MCs without intrinsic STOs could still display subthresh-

old voltage fluctuations owing to phasic inhibition from granule cells, these fluctuations had

smaller amplitudes and were much less regular compared with intact STOs in control cells

(compare Fig 5E with Fig 5F). MC spikes also became less synchronized with one another in

the absence of intrinsic STOs (compare Fig 5E with Fig 5F, bottom panels), although the mean

odor-evoked MC firing rates were essentially identical (Control: 14 Hz; STO removed: 13.2 Hz).

Finally, the synchronization index (SI) was reduced from 0.64 in controls to 0.53 when STOs

were removed. Hence, MC resonance contributed substantially to the integrity and regularity

of coherent gamma oscillations in the active OB network, even when the intrinsic STO fre-

quency was superseded by the PING-like mechanisms of the network frequency (see below).

The added stability and robustness of OB gamma oscillations contributed by these MC reso-

nance properties resembles the advantages of resonance-induced gamma (RING) oscillations

[57], with the important distinction that RING is described for resonant inhibitory interneu-

rons, whereas in the OB network it is the excitatory principal neurons that are resonant. The

mechanism of OB oscillations can be described as pyramidal resonance interneuron network

gamma (PRING), thereby acknowledging the PING-like properties of the activated gamma

oscillation as well as the additional properties afforded by MC resonance.

Faster network time constants supersede intrinsic STO frequencies

during sensory activation

Intrinsic STO frequencies appear to yield to higher-frequency network-based oscillations

owing to recurrent STO phase resets delivered by GC-mediated synaptic inhibition [28, 35]. If

this interpretation is correct, and MC resonance is an important contributor to network coher-

ence and frequency stability, then this oscillatory coherence should be disrupted if the intrinsic

STO frequency becomes faster than the natural frequency of the synaptically-based network

Coupled-oscillator model of olfactory bulb gamma oscillations
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oscillation. To test this, we increased the intrinsic MC STO frequency by reducing the time

constant of the activation variable of the slow potassium current (IKS) [33]. Specifically, we

reduced the activation time constant of IKS from 10 ms to 5 ms, and increased the conductance

densities of the IKS and INaP currents by factors of 1.6 and 1.3 respectively to maintain approxi-

mately the same STO amplitudes and MC firing rates. These modifications increased the STO

frequency in an isolated MC model cell from 29 Hz (in controls) to 44 Hz in response to a

200 pA depolarizing current injection (Fig 6A and 6B). Without altering any other model

Fig 5. Removing MC STOs impairs OB gamma oscillations. A: Voltage response of an isolated MC model

cell to a 0.2 nA current injection (top) and an expanded view of the STOs (bottom) under control conditions. B: As

in A, but after MC STOs were removed. C: Simulated LFP (top) during odor presentation, with autocorrelation

(middle) and frequency power spectrum (bottom) under control conditions (same as Fig 2B). D: As in C, but after

MC STOs were removed. E: Voltage responses of two pairs of MCs under control conditions. F: As in E, but after

MC STOs were removed. The MC STOs were removed by replacing the persistent sodium current (INaP) with an

ohmic cation current; the conductance of this current was tuned to maintain the same firing frequency.

https://doi.org/10.1371/journal.pcbi.1005760.g005
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parameters, this change in the intrinsic STO frequency seriously disrupted the sLFP gamma

rhythm and sharply reduced gamma power in the OB network (compare Fig 6C with Fig 5C).

Fig 6. Higher intrinsic MC STO frequencies require faster GABAergic synaptic decay to synchronize

activity. A: Voltage response of an isolated MC model cell to a 0.2 nA current injection (top), an expanded view

of the STOs (middle), and the STO frequency power spectrum (bottom) under control conditions. B: As in A, but

with a higher intrinsic STO frequency. C: Simulated LFP (top) during odor presentation, with autocorrelation

(middle) and frequency power spectrum (bottom) under conditions in which the STO frequency was increased

while the decay time constant of the GC-mediated GABAA synaptic conductance remained unchanged (18 ms).

D: Plot of MC STOs with associated cumulative GC-mediated GABAA synaptic conductance when STO

frequency was increased. The vertical black arrows indicate multiple STO cycles during one single GABAA

conductance decay. E: As in C, but when the decay time constant of the GC-mediated GABAA conductance was

reduced to 3 ms (from 18 ms) in the presence of the higher intrinsic STO frequency. F: As in D, but when the

decay time constant of the GC-mediated GABAA conductance was reduced to 3 ms in the presence of the

higher intrinsic STO frequency. The MC STO frequency was increased by reducing the activation time constant

of the slow-inactivating potassium current (IKS) while increasing the maximal conductances of INaP and IKS to

maintain the same firing frequency. The MC voltage was raised by 70 mV in D and F for display purposes.

https://doi.org/10.1371/journal.pcbi.1005760.g006

Coupled-oscillator model of olfactory bulb gamma oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005760 November 15, 2017 10 / 36

https://doi.org/10.1371/journal.pcbi.1005760.g006
https://doi.org/10.1371/journal.pcbi.1005760


A comparison of STO voltage timeseries with the aggregated GABAA conductances in the

same MCs confirmed that GC inhibition could no longer effectively regulate MC STOs, which

became irregular (Fig 6D). Phase locking between MC spikes and sLFP oscillations also was

significantly reduced (SI, controls: 0.64; increased STO frequency: 0.38), although the average

odor-evoked MC firing rate was virtually unchanged (controls: 14 Hz; increased STO fre-
quency: 14.4 Hz).

If this disruption was due to a mismatch between intrinsic STO frequency and the natural

frequency of the network oscillation, as predicted, rather than to some separate effect of the

changes made to the model MCs, then the coherence of OB gamma oscillations should be

restored if the natural frequency of the network oscillation was also increased so as to again be

faster than those of the MC STOs. In PING and ING networks, the natural frequency of net-

work oscillations depends strongly on the decay time constant of the inhibitory synapse [32,

58]. Indeed, when the GABAA receptor decay time constant of the GC!MC synapses was

reduced to 3 ms (from the default 18 ms), in a network populated with MCs exhibiting the

higher intrinsic STO frequency, a strong gamma oscillation re-emerged at 51.3 Hz (Fig 6E)–

considerably faster than the 32.4 Hz frequency exhibited by control networks. Under these

conditions, MC STOs again displayed rhythmicity and were entrained effectively by GC-medi-

ated GABAA synaptic conductances (Fig 6F); network synchrony also was substantially

restored (SI, controls: 0.64; increased STO frequency alone: 0.38; increased STO frequency + 3

ms synaptic decay time constant: 0.56). These simulations indicate that the decay rate of GC-

mediated GABAA inhibition must be faster than the intrinsic MC STO frequency in order to

be able to synchronize MC dynamics.

To test whether it was important that the inhibitory synaptic decay time constant be closely

matched to the MC STO frequency, or that it simply be faster, we tested a network in which

we paired the faster (3 ms) GABAA synaptic decay time constant with the default (29 Hz)

intrinsic MC STO frequency. Under these parameters, the network oscillation frequency

increased from 32.4 Hz (under control conditions; Fig 2B) to 43.4 Hz (Fig 7A). This increase

in oscillation frequency was accompanied by a slight reduction in oscillatory power and coher-

ence, as indicated by a wider spectral peak and less persistent periodicity, though the ampli-

tudes of the two spectral peaks were comparable (compare Fig 7A with Fig 2B). Additionally,

under these conditions the GABAA conductance fluctuated regularly and decayed fully within

every gamma cycle owing to its fast dynamics, effectively entraining MC STOs (Fig 7B). In

contrast, when the GABAA decay time constant was increased from 18 ms to 30 ms, there was

no change in the peak frequency of the network oscillation (18 ms: 32.4 Hz; 30 ms: 33 Hz),

though its power was reduced considerably (compare Fig 7C with Fig 2B). Within individual

MCs, the slowly decaying GABAA conductance accumulated across successive gamma cycles

and lost much of its rhythmicity, resulting in inconsistent effects on MCs that failed to super-

sede their intrinsic STO frequency preferences (Fig 7D). Accordingly, under control parame-

ters, synaptic decay time constants faster than ~18 ms progressively increased network sLFP

oscillation frequencies, whereas slower time constants had no effect (Fig 7E). These faster

kinetics also maintained relatively high power spectral peaks at the gamma frequency (oscilla-

tion indices), whereas slower synaptic kinetics resulted in rapidly declining oscillation indices

(Fig 7F). Mean spiking frequencies in both MCs and GCs, however, varied monotonically with

respect to the rate of GABAA decay (Fig 7E), likely because slower decay rates produced an

overall increase in the total integrated inhibition of MCs. Specifically, as the decay time con-

stant was increased from 3 ms to 30 ms, the MC firing rate decreased from 21.6 Hz to 10.8 Hz,

resulting in a concomitant decrease in GC firing rate from 6.9 Hz to 3.4 Hz. In sum, these

results showed that a wide range of synaptic decay time constants generated reliable coherence

from the OB network provided that they were lower (faster) than a threshold value determined
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by the intrinsic frequency of MC STOs. However, there also was a clear peak (15 ms; Fig 7F),

indicating that the strongest network oscillatory power could be achieved by an optimal

matching of the synaptic and STO timescales. Additionally, these results demonstrated that

Fig 7. The OB gamma oscillation frequency is responsive to faster, but not slower, GABAA decay time

constants. A: Simulated LFP (top) during odor presentation, with autocorrelation (middle) and frequency

power spectrum (bottom), when the decay time constant of the GC-mediated GABAA conductance was

reduced from 18 ms to 3 ms. B: Plot of MC STOs with associated cumulative GC-mediated GABAA synaptic

conductance when the latter had a decay time constant of 3 ms. C: As in A, but when the decay time constant

of the GC-mediated GABAA conductance was increased from 18 ms to 30 ms. D: As in B, but when the decay

time constant of the GC-mediated GABAA conductance was increased from 18 ms to 30 ms. E: Average

odor-evoked MC and GC firing rates and sLFP oscillation frequency as functions of the decay time constant of

the GC-medicated GABAA conductance. F: Synchronization and oscillation indices as functions of the decay

time constant of the GC-medicated GABAA conductance. The default (control) decay time constant in this

study was 18 ms (indicated by black arrows in E, F). Error bars denote standard deviations (SD). The MC

voltage was raised by 70 mV in B and D for display purposes.

https://doi.org/10.1371/journal.pcbi.1005760.g007

Coupled-oscillator model of olfactory bulb gamma oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005760 November 15, 2017 12 / 36

https://doi.org/10.1371/journal.pcbi.1005760.g007
https://doi.org/10.1371/journal.pcbi.1005760


the network oscillation frequency was robust to substantial changes in mean spike frequencies

in both MCs and GCs.

Finally, we decided to increase the intrinsic MC STO frequency by increasing the excitation

levels of all MCs, rather than by altering their IKS and INaP conductance parameters as above, in

order to test whether similar dynamical effects resulted. Depolarizing MCs increases their intrin-

sic STO frequencies both experimentally [28] and in the present model. To broadly increase MC

excitation while retaining the same heterogeneous odor inputs, we decreased the level of PGC-

mediated inhibition on MCs by reducing the PGC!MC synaptic weight to half of the control

value (from 4 to 2). The results largely conformed to those observed when STO frequencies were

increased by adjusting cellular conductance parameters (Fig 6). Under default parameters (with

an 18 ms GABAA decay time constant), reducing PGC inhibitory weights by half had no effect

on the network oscillation frequency (controls: 32.4 Hz; 50%WPGC-MC: 33.6 Hz), but did impair

the coherence and stability of field potential oscillations and reduce the oscillation index (peak

spectral power; compare Fig 8A with Fig 2B). In contrast, when using a faster GC synaptic decay

time constant of 3 ms, this reduced PGC inhibition produced a coherent gamma oscillation at a

higher peak frequency (controls: 32.4 Hz; 3 ms decay time constant only: 43.4 Hz; 3 ms decay

time constant + 50%WPGC-MC: 51.3 Hz; Fig 8B), because the faster synaptic decay was again able

to effectively reset the intrinsic MC STOs on every cycle. This result further suggests that higher

overall levels of MC excitation, which generate faster intrinsic STO dynamics, would require

correspondingly faster synaptic inhibition kinetics in order to maintain network stability, and

thereby demonstrates the importance of maintaining a limited range of mean MC activity levels

via global afferent activity normalization ([59]; corrected mechanism in [54]).

Optimal inhibitory synaptic weights are required for strong and coherent

OB gamma oscillations

The synaptic weight of GC!MC inhibition also is an important factor in determining the sta-

bility of network gamma oscillations. To assess this effect, we varied the GC!MC synaptic

Fig 8. Gamma oscillation frequency is determined by the decay time constant of the GC-mediated GABAA synaptic conductance. A: Simulated

LFP (top) during odor presentation, with autocorrelation (middle) and frequency power spectrum (bottom), when PGC!MC synaptic weights were reduced

by 50% while maintaining the same decay time constant (18 ms). B: As A, but with a reduced decay time constant of the GC-mediated GABAA conductance

(3 ms) in addition to a 50% reduction in PGC!MC synaptic weights.

https://doi.org/10.1371/journal.pcbi.1005760.g008
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weight (WGC!MC) from zero (full blockade) up to five times the default value. Under full

blockade conditions, MC spikes and STOs were desynchronized (Fig 9A) and network sLFP

oscillations were dramatically reduced (compare Fig 9B with Fig 2B). Whereas overall spike

rates increased substantially (average odor-evoked spike rate, controls: 14 Hz; no GC inhibi-

tion: 24 Hz), synchronization among MC spikes was sharply reduced (SI, controls: 0.63; no

GC inhibition: 0.30). These results further confirm that GC-mediated feedback inhibition is

necessary for the synchronization of mitral cells into a coherent gamma rhythm in the OB.

Fig 9. There is an optimal GC!MC synaptic strength for strong and coherent OB gamma oscillation.

A: Membrane potential timeseries of two pairs of MCs during odor presentation without GC inhibition. B:

Simulated LFP (top) during odor presentation, with autocorrelation (middle) and frequency power spectrum

(bottom), in the absence of GC inhibition. C: As in A, but with a 3-fold increase of the GC!MC synaptic

weight (300%WGC-MC). D: As in B, but with 300%WGC-MC. E: Average odor-evoked MC and GC firing rates

and sLFP oscillation frequency as functions of GC!MC synaptic weights. F: Synchronization and oscillation

indices as functions of GC!MC synaptic weights. The default GC!MC synaptic weight in this study was 2

(indicated by black arrows in E, F). Error bars denote standard deviations (SD).

https://doi.org/10.1371/journal.pcbi.1005760.g009
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In contrast, whenWGC!MC was increased threefold (from 2 to 6), MC spiking activity was

reduced substantially (controls: 14.0 Hz; 300%WGC!MC: 8.4 Hz) and STOs were corrupted

by an irregular mixture of shorter and longer oscillation periods, though MC membrane

potential fluctuations were still moderately well-coordinated (Fig 9C). The frequency power

spectrum reflected this disruption, presenting a number of low-power peaks (Fig 9D); two of

these (at 18.3 Hz and 29.9 Hz) were somewhat more distinct, though both remained well

below control amplitudes (compare Fig 9D with Fig 2B). These results indicate that excessive

inhibition of MCs by large GC!MC synaptic weights impairs network gamma oscillations by

disrupting STO periodicity.

The frequency of the network sLFP oscillation and the mean spike rates of both MCs and

GCs declined asWGC!MC increased from 0 to 6 and remained stable thereafter (Fig 9E). In

contrast, the synchronization index rose substantially asWGC!MC increased from 0 to 2 and

maintained this level for all larger synaptic weights measured (Fig 9F). The oscillation index

(spectral peak amplitude) also increased greatly asWGC!MC grew from 0 to 2, but then pro-

gressively decreased onceWGC!MC exceeded 3 (Fig 9F). This pattern of results indicates that

the degradation of gamma oscillatory power at larger GC!MC weights was not a result of

reduced phase coupling, but of disrupted STO periodicity (Fig 9C). In sum, while sufficient

GC inhibition is required to reset and synchronize MC STOs, excessive GC synaptic weights

are detrimental to the stability of the gamma rhythm; an optimal level of GC inhibition is

required to sustain a strong and coherent gamma oscillation.

To understand in detail why larger GC!MC synaptic weights impaired gamma rhyth-

micity, we plotted spike time histograms for both MCs and GCs alongside the membrane

potential timeseries of a representative MC and the aggregate GC-mediated GABAA conduc-

tance of that MC, all under the disruptive conditions of a 3-fold increase inWGC!MC (Fig

10A; same parameters as Fig 9C and 9D). At a timepoint marking a surge of synchronous

MC spiking activity, GCs responded in turn with higher-than-average activity (Fig 10A, top
and second panels, leftmost vertical line). Because of the large WGC!MC, this surge in GC

activity evoked a particularly enlarged (and correspondingly persistent) GABAergic chloride

conductance in MCs (Fig 10A, third panel, leftmost vertical line), which substantially hyper-

polarized MC membrane potentials (Fig 10A, bottom panel, leftmost vertical line) and, in

aggregate, noticeably suppressed MC firing across the network (Fig 10A, top panel, second
vertical line). This reduced level of MC activity, in turn, did not induce any GC spiking in

that cycle (Fig 10A, second panel, second vertical line). As the GABAergic chloride conduc-

tance continued to decay (Fig 10A, third panel, second vertical line), marginally increased

numbers of spikes were generated from the MC population (Fig 10A, top panel, third vertical
line), which evoked weak responses in GCs (Fig 10A, second panel, third vertical line) and

hence much smaller GABAergic conductances that only minimally hyperpolarized MC

membrane potentials (Fig 10A, third and bottom panels, third vertical line). After a few such

“small” cycles, the MCs recovered from the effects of accumulated inhibition and a high-

activity cycle occurred again (Fig 10A, all panels, rightmost vertical line). The irregularity of

this recurrent process substantially distorted MC subthreshold activity and gamma rhyth-

micity (Fig 9D; Fig 10A, bottom panel).

If this disruption of gamma oscillations indeed resulted from an oversuppression of MCs

by excessive GC inhibition, as hypothesized, then boosting MC excitability should restore the

rhythmicity. To test this, we increased MC mean firing rates back to the control level by reduc-

ing the PGC!MC inhibitory synaptic weight (WPGC!MC) to 50% of its default value (controls:

14.0 Hz; 300%WGC!MC: 8.4 Hz; 300%WGC!MC + 50%WPGC!MC: 14.4 Hz). GC firing rates

also were restored to control levels by this change (controls: 4.6 Hz; 300%WGC!MC: 2.8 Hz;

300%WGC!MC + 50%WPGC!MC: 4.5 Hz). Under these restored excitability conditions, MC
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spikes again reliably drove substantial GC responses in every gamma cycle, the GABAergic

synaptic conductance changes became more regular, and the periodicity of MC subthreshold

activity was substantially improved (compare Fig 10B with Fig 10A). Moreover, MC STOs

Fig 10. OB gamma oscillation impairments arising from excessive GC!MC synaptic weights can be

counteracted by reducing PGC inhibition of MCs. A: Spike timing histograms of MCs (top panel) and GCs

(second panel) with associated cumulative GC-mediated GABAA synaptic conductance (third panel) and MC

STOs (bottom panel) when the GC!MC synaptic weight was increased threefold (300%WGC-MC). B: As in A,

but with an additional 50% reduction in the PGC!MC synaptic weight (50%WPGC-MC). C: Membrane potential

timeseries of two pairs of MCs during odor presentation with 300%WGC-MC and 50%WPGC-MC. D: Simulated

LFP (top) during odor presentation, with autocorrelation (middle) and frequency power spectrum (bottom),

with 300%WGC-MC and 50%WPGC-MC. E: Average odor-evoked MC and GC firing rates and sLFP oscillation

frequency as functions of GC!MC synaptic weight when the decay time constant of the GC-mediated GABAA

conductance was reduced to 3 ms (from 18 ms). F: Synchronization and oscillation indices as functions of

GC!MC synaptic weight when the decay time constant of the GC-mediated GABAA conductance was reduced

to 3 ms (from 18 ms). The default GC!MC synaptic weight in this study was 2 (indicated by black arrows in E,

F). Error bars denote standard deviations (SD).

https://doi.org/10.1371/journal.pcbi.1005760.g010
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were again well synchronized, and exhibited greater stability and regularity than under condi-

tions of elevated GC inhibition but default PGC inhibition (compare Fig 10C with Fig 9C). As

a result, the second spectral peak observed in Fig 9D was eliminated and a single coherent

gamma peak again appeared at 34.2 Hz, comparable to the control value of 32.4 Hz (compare

Fig 10D with Fig 2B). The above simulation demonstrates that the detrimental effect of exces-

sive GC inhibition on gamma rhythmicity can be ameliorated by reduced PGC inhibition,

indicating that an overall balance of excitation and inhibition is required for coherent, stable

network gamma oscillations.

Finally, the synaptic weights and decay time constants of GABAA synapses are not function-

ally independent of one another; shorter decay time constants generate less total MC inhibi-

tion and a weaker and shorter suppressive effect, all else being equal. We therefore asked

whether the optimal inhibitory synaptic weights for robust oscillations and synchronization

would differ depending on the synaptic time constant. We generated a network in which the

GABAergic decay time constant was reduced from 18 ms (in controls) to 3 ms (as depicted in

Fig 7A and 7B), and measured network oscillation and spike frequencies and the oscillation

and synchronization indices as functions of GC!MC synaptic weight. As predicted, the oscil-

lation index (OI) peak and the SI plateau both occurred at substantially higher inhibitory syn-

aptic weights when using the faster decay time constants (compare Fig 10E and 10F to Fig 9E

and 9F). The inhibitory synaptic decay time constant therefore also must be factored into the

balance between excitation and inhibition that enables stable and coherent gamma oscillations

across the OB network.

Oscillatory dynamics are tolerant of increased excitatory synaptic

weights

The functional efficacy of feedback inhibition in the OB EPL depends on the synaptic weights

of both the inhibitory GC!MC and the excitatory MC!GC synapses. If a balance between

excitation and inhibition is required for strong and stable gamma oscillations across the OB,

then an optimal range of excitatory MC!GC synaptic weights may also exist. However,

because MC!GC synapses onto adult-born GCs are plastic [47, 48], the EPL network would

be expected to tolerate a substantial range and heterogeneity among these synaptic weights. To

examine the functional range of synaptic weights for the excitatory MC!GC synapses in this

network, we varied the MC!GC synaptic weight (WMC!GC) from 0 up to 8 times the default

value. When these synapses were blocked (i.e.,WMC!GC = 0), GCs were largely inactive (0.9

Hz spontaneous background activity); other simulation results were similar to those obtained

when blocking GABAergic synaptic transmission (i.e.,WGC!MC = 0; Fig 9A and 9B) and are

not separately reported here. WhenWMC!GC was reduced to 50% of the default value (from 1

to 0.5), the GC subthreshold potential was substantially hyperpolarized and lost much of its

rhythmicity compared with controls (Fig 11A, upper panel), leading to significantly smaller

and arrhythmic GABAergic chloride currents in MCs (Fig 11A, lower panel). Because of this

reduced phasic GC inhibition, MC activity increased, but both MC spikes and STOs were rela-

tively desynchronized (Fig 11B), and gamma oscillations were greatly impaired (compare Fig

11C with Fig 2B).

In contrast, whenWMC!GC was increased to 8 times the default value (from 1 to 8), GCs

were strongly excited, spiking in response to many incoming EPSPs and maintaining a level of

rhythmicity comparable to controls (Fig 11D, upper panel), but delivering much larger phasic

GABAergic chloride conductances onto MCs (Fig 11D, lower panel). The increased level of

phasic inhibition suppressed MC spikes, but retained the synchrony and periodicity of MC

STOs (Fig 11E). Accordingly, a robust and coherent gamma oscillation persisted even with an
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8-fold increase in the MC!GC synaptic weight, with little change in frequency (controls: 32.4

Hz; 800%WMC!GC: 35.4 Hz; Fig 11F).

To break this effect down further, we generated raster plots of MC and GC firing under

these two conditions. WhenWMC!GC was reduced by 50%, the mean odor-evoked GC firing

rate was reduced from 4.6 Hz (in controls) to 2.6 Hz, resulting in a slight increase in the mean

MC firing rate from 14 Hz (in controls) to 17.7 Hz. As noted above, network synchrony was

reduced substantially (SI, controls: 0.63; 50%WMC!GC: 0.40), because neither MC nor GC

spike trains were well coordinated (Fig 12A and 12B). In contrast, with an eightfold increase in

WMC!GC, GC firing rates were greatly increased (controls: 4.6 Hz; 800%WMC!GC: 12.8 Hz)

and GC spikes became remarkably well synchronized; this strong GC activation substantially

suppressed MC firing (controls: 14 Hz; 800%WMC!GC: 3.3 Hz; Fig 12C and 12D). This sub-

stantially different balance of MC and GC activity was stable because one MC input was strong

enough to produce correlated discharges in many postsynaptic GCs. Notably, under these con-

ditions the mean MC firing rate (3.3 Hz across all MCs) was much lower than the oscillation

frequency (35.4 Hz) and a majority of MCs exhibited no odor-evoked spikes (Fig 12C). The

spikes of the remaining active MCs were effectively entrained by the highly synchronous GC

activity, and exhibited elevated levels of synchrony (SI, controls: 0.63; 800%WMC!GC: 0.92);

i.e., coherent gamma oscillations persisted despite substantial increases in lateral excitatory

synaptic weights. This is a particularly important stabilizing property given that the intrinsic

OB synaptic plasticity underlying odor learning relies on the potentiation of excitatory synap-

ses [47, 48].

Fig 11. OB gamma oscillations are robust to strongly increased, but not reduced, MC!GC synaptic weights. A: Voltage timeseries of representative

GCs (top) and GC-mediated GABAA synaptic conductances on MCs (bottom), under control conditions and following a 50% reduction of MC!GC synaptic

weights (50%WMC-GC). B: Membrane potential timeseries of two pairs of MCs with 50%WMC-GC. C: Simulated LFP (top) during odor presentation, with

autocorrelation (middle) and frequency power spectrum (bottom), with 50%WMC-GC. D: As in A, but under control conditions compared with an eightfold

increase in the MC!GC synaptic weight (800%WMC-GC). E: As in B, but with 800%WMC-GC. F: As in C, but with 800%WMC-GC.

https://doi.org/10.1371/journal.pcbi.1005760.g011
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The average odor-evoked MC/GC firing rates and sLFP oscillation frequencies across a

range of MC!GC synaptic weights are depicted in Fig 12E. AsWMC!GC was increased, MC

firing rates decreased while GC firing rates increased, eventually crossing. In contrast, the

sLFP oscillation frequency remained stable (though unreliable at weights below 1 owing to

very low spectral power; Fig 12E). The OI grew rapidly from its arrhythmic values at MC!GC

synaptic weights below 1 up to a strong peak value that persisted across a fourfold range of

excitatory synaptic weights, decreasing moderately thereafter (Fig 12F). This eventual decline

Fig 12. Gamma oscillations and spike synchronization persist under a wide range of MC!GC

synaptic weights. A: Raster plot of MC spikes after MC!GC synaptic weights were reduced by 50% (50%

WMC-GC). The red arrow designates the onset of odor input. B: Raster plot of GC spikes with 50%WMC-GC. C:

Raster plot of MC spikes after MC!GC synaptic weights were increased eightfold (800%WMC-GC). D: Raster

plot of GC spikes with 800%WMC-GC. E: Average odor-evoked MC and GC firing rates and sLFP oscillation

frequency as functions of MC!GC synaptic weight. F: Synchronization and oscillation indices as functions of

MC!GC synaptic weight. The default MC!GC synaptic weight was 1 (indicated by black arrows in E, F).

Error bars denote standard deviations (SD).

https://doi.org/10.1371/journal.pcbi.1005760.g012
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arose as the increased activation of GCs began to impose tonic, as well as phasic, feedback inhi-

bition that further reduced MC activation levels. In contrast, the SI increased steadily as

WMC!GC increased, gradually approaching unity at higher synaptic weights (Fig 12F).

Gamma oscillations are robust to heterogeneity in afferent input intensity

Heterogeneity in population activity levels, whether across the neurons of an active ensemble

or within a given population over time, poses a challenge to the stability and consistency of

dynamical systems [60–65]. For example, the frequencies of gamma oscillations driven by

pure PING mechanics vary directly with the activation levels of the excitatory neurons [58],

which in the olfactory bulb are strongly heterogeneous (indeed, heterogeneity in MC activa-

tion levels is the fundamental basis of olfactory sensory representations). Notably, systems of

coupled oscillators often are robust to reasonable heterogeneities in excitation levels [66];

indeed, the essence of coupled oscillator systems is a dynamics by which intrinsic differences

in the natural frequencies of constituent oscillators are drawn together into a common limit

cycle.

To assess the robustness of the OB network gamma oscillation to variance across the affer-

ent input levels of MCs, we altered the ranges of excitation generated across the MC popula-

tion by simulated odorant stimuli. By default, steady-state odor input intensities us (nA) were

drawn from a uniform distribution within a bounded range (US1, US2). We first varied the

upper input bound US2 from 0.4 nA to 1.0 nA with increments of 0.2 nA, with the lower input

bound US1 fixed at 0.2 nA (Fig 13). When the upper input bound was reduced from 1.0 nA (in

controls) to 0.4 nA, the odor-evoked MC firing rate dropped from 14 Hz to 8.8 Hz and the

MC firing rate variance was markedly reduced (SD, us 2 (0.2, 1.0): 9.8 Hz, us 2 (0.2, 0.4): 1.6

Hz; Fig 13A). Because of the reduced MC drive, the odor-evoked GC firing rate also declined

from 4.6 Hz to 2.4 Hz, and the reduction in GC excitation generated much smaller GABAA

conductance fluctuations on MCs (Fig 13B); this feedback response limited the overall change

in the balance of excitation and inhibition. Despite these changes in firing rates and the ampli-

tudes of synaptic interactions, MC oscillations remained highly synchronized under both con-

ditions (Fig 13C), and the synchronization index was essentially unchanged (SI, us 2 (0.2, 1.0):

0.63; us 2 (0.2, 0.4): 0.62), and the frequency of the dominant sLFP spectral peak was only

slightly reduced (us 2 (0.2, 1.0): 32.4 Hz; us 2 (0.2, 0.4): 28.7 Hz; compare Fig 13D with Fig

2B).

The mean odor-evoked neuronal firing rates and sLFP oscillation frequencies across a

range of upper input bounds are depicted in Fig 13E. As the upper input bound increased

from 0.4 nA to 1.0 nA, the mean MC firing rate increased 58.6% (from 8.7 Hz to 13.8 Hz) and

that of GCs increased 76.9% (from 2.6 Hz to 4.6 Hz). In contrast, there was only a 14.3%

increase in oscillation frequency (from 28.6 Hz to 32.7 Hz), demonstrating the relative robust-

ness of OB gamma frequency to input variance. The synchronization and oscillation indices

for the same range of upper input bounds are shown in Fig 13F. Both indices also demon-

strated considerable stability in response to changes in the upper input bound.

We next fixed the upper input bound US2 at 1.0 nA, and varied the lower input bound US1

from 0.2 nA to 0.8 nA with increments of 0.2 nA (Fig 14). Increasing the lower input bound

reduced input heterogeneity, as in Fig 13, but potentiated rather than reducing the average

MC excitation level. When US1 was increased from 0.2 nA to 0.8 nA, the odor-evoked MC fir-

ing rate increased from 14 Hz to 24.6 Hz, with markedly reduced variance (SD, us 2 (0.2, 1.0):

9.8 Hz; us 2 (0.8, 1.0): 3.6 Hz), leading to highly synchronized MC spikes (SI, us 2 (0.2, 1.0):

0.63; us 2 (0.8, 1.0): 0.7; Fig 14A and 14D). Accordingly, a strong, coherent sLFP gamma oscil-

lation was generated with a higher-amplitude spectral peak than that exhibited by controls
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(Fig 14D; also compare Fig 14B with Fig 2B). However, despite this large increase in the mean

MC firing rate, the sLFP oscillation frequency remained remarkably stable (us 2 (0.2, 1.0): 32.4

Hz; us 2 (0.8, 1.0): 31.1 Hz; Fig 14C).

Fig 13. OB gamma oscillations are robust to variation in the steady-state upper bound of afferent

input. A: Odor-evoked firing rates of all 25 MCs under control conditions (top) and following a reduction in the

steady-state upper input bound (US2) from 1.0 nA to 0.4 nA (bottom). B: Timeseries of cumulative GC-

mediated GABAA synaptic conductances in two representative MCs under control conditions (top) and

following a reduction in the steady-state upper input bound from 1.0 nA to 0.4 nA (bottom). C: Membrane

potential timeseries in two representative MCs under control conditions (top) and following a reduction in the

steady-state upper input bound from 1.0 nA to 0.4 nA (bottom). D: Simulated LFP (top) during odor

presentation, with autocorrelation (middle) and frequency power spectrum (bottom), after the steady-state

upper input bound was lowered to 0.4 nA. E: Average odor-evoked MC and GC firing rates and sLFP

oscillation frequency as functions of the steady-state upper bound of afferent input (US2). F: Synchronization

and oscillation indices as functions of the steady-state upper input bound (US2). In these simulations, the

steady-state lower input bound was maintained at its default (0.2 nA). The default upper input bound was 1.0

nA (indicated by black arrows in E, F). Error bars denote standard deviations (SD).

https://doi.org/10.1371/journal.pcbi.1005760.g013
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Glomerular-layer inhibition enables gamma oscillations by limiting MC

excitation and firing rate heterogeneity

Coupled-oscillator networks are able to synchronize oscillators with nonuniform natural fre-

quencies, but this robustness has limitations [61, 62, 66]. The large differences in input activa-

tion that can be generated by primary sensory receptor populations (responding to stimuli

varying by orders of magnitude in physical intensity and receptive-field optimality) require

regulation if they are to be constrained within the limited permissive range of the EPL’s oscil-

latory regime. Specifically, the range of absolute physiological variability generated in primary

sensor populations must be compressed into a dynamic range that does not disrupt the func-

tional dynamics of subsequent sensory system computations. This need is met in the early

olfactory system by a series of concentration tolerance mechanisms (reviewed in [67]), culmi-

nating in a global normalization computation in the deep glomerular layer ([59]; corrected

mechanism in [54]); this computation is mediated by the heterogeneous periglomerular/short-

axon cell population [68, 69] and modeled herein by PGCs. To demonstrate the importance of

these intensity compression mechanisms and examine the role of PGC-mediated inhibition in

enabling OB gamma oscillations, we varied the PGC!MC synaptic weight (WPGC!MC) from

0 to 250% of its default value.

Fig 14. OB gamma oscillations are robust to variation in the steady-state lower bound of afferent

input. A: Raster plot of MC spikes when the steady-state lower input bound (US1) was increased fourfold,

from 0.2 nA to 0.8 nA. The red arrow designates the onset of odor input. B: Simulated LFP (top) during odor

presentation, with autocorrelation (middle) and frequency power spectrum (bottom), after the steady-state

lower input bound (US1) was increased to 0.8 nA. C: Average odor-evoked MC and GC firing rates and sLFP

frequency as functions of the steady-state lower input bound (US1). D: Synchronization and oscillation indices

as functions of the steady-state lower input bound (US1). In these simulations, the steady-state upper input

bound was maintained at its default (1.0 nA). The default lower input bound was 0.2 nA (indicated by black

arrows in C, D). Error bars denote standard deviations (SD).

https://doi.org/10.1371/journal.pcbi.1005760.g014
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When PGC inhibition was entirely removed (WPGC!MC = 0), the average odor-evoked MC

firing rate increased markedly, from 14 Hz (in controls) to 32.2 Hz, inducing a concomitant

increase in the mean GC firing rate (from 4.6 Hz to 9.5 Hz; compare Fig 15A with Fig 3D). Fir-

ing rates within the MC ensemble also displayed a much larger variance when PGC inhibition

was removed (SD, controls: 9.8 Hz; No PGC inhibition: 19.3 Hz; compare Fig 15B with Fig

2A). Importantly, the removal of PGC inhibition significantly degraded MC spike synchrony

(SI, controls: 0.64; No PGC inhibition: 0.39); this reduction in SI arose because of the substan-

tial increase in asynchronous background or noisy spiking in MCs (compare Fig 15A, upper
panel, with Fig 3D, upper panel). Nevertheless, GC population activity still retained a high level

of rhythmicity comparable to controls (compare Fig 15A, lower panel, with Fig 3D, lower
panel), and imposed strong phasic inhibition on MCs. Examination of MC and GC population

activities indicates that GCs spiked only in response to peak MC spike rates (Fig 15A, dashed
vertical lines), and the resulting phasic inhibition from GCs only partially suppressed MC

spikes (i.e., MC spikes persisted during peak phasic inhibition), in contrast to the complete

periodic suppression of MC spikes by GC inhibition in controls (compare Fig 15A with Fig

3D). Moreover, spike rates in the most strongly driven MCs exceeded the frequency of the

underlying STOs, violating the restrictions of coupled oscillator-derived synchrony and conse-

quently wholly desynchronizing with the remainder of the MC population (Fig 15C, lower
panel; Fig 15J). Because of the loss of these highly-activated MCs from the synchronous popu-

lation, the oscillatory power was considerably reduced in the absence of PGC inhibition (com-

pare Fig 15D with Fig 2B), although a sizable spectral peak arising from the less-active MC

population still persisted, exhibiting little change in frequency (controls: 32.4 Hz; No PGC inhi-
bition: 34.2 Hz). This result supports two important points: First, although PGC inhibition

improves global synchrony–specifically, it improves global participation in the synchronous

ensemble by limiting the absolute activation levels of MCs to within a permissive range–it is

not required for the generation of the OB gamma rhythm (Fig 15D), whereas GC inhibition is

clearly required for OB gamma oscillogenesis (Fig 9B). Second, and critically, these results

make clear that this coupled-oscillator mechanism is capable of sustaining coherent oscilla-

tions among participating MCs–i.e., those that are both within the permissive band of afferent

activation levels and adequately coupled via MC/GC synaptic weights–irrespective of the addi-

tional presence of substantial numbers of active MCs that are non-participants in the coherent

assembly (Fig 15C). As MCs are known for high levels of background spiking activity, both in
vitro and in vivo but especially in awake/behaving animals [70], it is critical to determine the

extent to which this activity is likely to interfere with the transmission of neural information.

Experimental studies and theoretical models of gamma-timescale coincidence detection in the

piriform cortex have suggested that such postsynaptic temporal selectivity will naturally

exclude most uncorrelated background activity in MCs from affecting third-order neuronal

representations of odor information [71, 72]. However, the present model is the first to dem-

onstrate that timing-based odor representations in the OB can persist in the presence of high

levels of uncorrelated background spiking.

Increased PGC inhibition also disrupted OB oscillations (Fig 15E–15H). When the

PGC!MC synaptic weight was increased twofold (from 4 to 8), the average odor-evoked MC

firing rate decreased from 14 Hz to 4.5 Hz (compare Fig 15F with Fig 2A), reducing the mean

GC firing rate from 4.6 Hz to 1.3 Hz. Because of the paucity of activity under this tonic inhibi-

tory suppression, the MC-GC feedback loop was functionally disrupted; GCs responded

sparsely and weakly (compare Fig 15E with Fig 3D), evoking weak and irregular GABAergic

synaptic conductances onto MCs. MC STOs thereby began to desynchronize and become

irregular (compare Fig 15G to Fig 2C), and both gamma rhythm and power were seriously

impaired (compare Fig 15H with Fig 2B).
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Fig 15. PGC inhibition enables OB gamma oscillations by limiting MC excitation and firing rate

heterogeneity. A: Spike timing histograms of MCs (top) and GCs (bottom) without PGC inhibition (0%

WPGC-MC). Vertical lines accentuate the alignment of spike time distributions. B: Steady-state OSN input
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Both the MC and GC mean firing rates decreased rapidly asWPGC!MC increased further,

whereas the sLFP oscillation frequency was stable below the control value and declined mod-

estly at higher levels of PGC inhibition (Fig 15I), from 34.5 Hz atWPGC!MC = 0 to 24.2 Hz at

WPGC!MC = 10. The synchronization index increased along with the strength of PGC inhibi-

tion up until the control value, and remained largely stable under stronger PGC!MC inhibi-

tory weights (Fig 15J). In contrast, the oscillation index peaked around the control value and

declined rapidly at higher PGC weights (Fig 15J). The discrepancy between SI and OI at large

WPGC!MC values arises largely from the fact that decreasing the numbers of spiking MCs does

not reduce the SI, whereas the OI is sensitive to the desynchronization of driver currents and

other subthreshold activity occurring among less strongly activated neurons. This highlights

the fact that a correspondence between MC spikes and LFP deflections alone does not suffice

to ensure coherent gamma oscillations.

These results show that PGC-mediated inhibition can serve to constrain the majority of

MCs within a permissive range of activation. This constraint both protects the relational acti-

vation differences among MCs that underlie odor quality encoding and enables these odor-

activated MCs to participate in a globally coherent gamma-oscillatory ensemble that constrains

MC spike timing. Moreover, this globally coordinated oscillation, and the underlying phase-

constraint of STOs and spikes in a majority of MCs, is robust to the potentially disruptive

impact of highly active but uncorrelated MCs, whether uncorrelated owing to overstimulation

or to inadequate coupling.

Gamma oscillations are robust to network size

Our OB network model contained 25 MCs, 25 PGCs and 100 GCs, a small fraction of the num-

ber of neurons in the biological OB; additionally, the ratio between the numbers of GCs and

the numbers of MCs and PGCs is far greater than is represented in the model [1]. To test

whether gamma oscillation in our model was robust to variations in this ratio, we increased

the number of GCs (NGC) from 100 to 225 (15�15 array in Fig 1B) and 400 (20�20) respec-

tively, while maintaining the number of MCs and PGCs at 25 each. To correct for the increased

total inhibition that would be delivered onto MCs, we scaled down the maximal conductance

of individual GC!MC synapses by the same factor such that the total GABAA conductance

received by each MC remained relatively constant. When NGC was increased to 225, the mean

odor-evoked MC and GC firing rates remained relatively unchanged (controls, MC: 14 Hz,

GC: 4.6 Hz; NGC = 225, MC: 13 Hz, GC: 4.2 Hz). Both MC and GC spikes displayed clear syn-

chronization, and MCs displayed appropriately sparse spiking activity (Fig 16A and 16B). A

dominant spectral peak in the sLFP power spectrum persisted at almost the same frequency

and power as controls (controls: 32. 4 Hz; NGC = 225: 33.6 Hz; compare Fig 16C with Fig 2B).

When NGC was increased to 400, the mean odor-evoked MC and GC firing rates also

remained stable (controls, MC: 14 Hz, GC: 4.6 Hz;NGC = 400, MC: 14.2 Hz, GC: 5.2 Hz), and MC

activity remained reasonably sparse (Fig 16D and 16E). A strong coherent gamma oscillation

intensities (top) and the odor-evoked firing rates of all 25 mitral cells (bottom) after PGC-mediated inhibition

was blocked. C: Membrane potential timeseries of two example pairs of MCs during odor presentation in the

absence of PGC inhibition. D: Simulated LFP (top) during odor presentation, with autocorrelation (middle) and

frequency power spectrum (bottom), in the absence of PGC inhibition. E: As in A, but with a twofold increase

in PGC!MC synaptic weights (200%WPGC-MC). F: As in B, but with a twofold increase in PGC!MC synaptic

weights. G: As in C, but with a twofold increase in PGC!MC synaptic weights. H: As in D, but with a twofold

increase in PGC!MC synaptic weights. I: Average odor-evoked MC and GC firing rates and sLFP oscillation

frequency as functions of PGC!MC synaptic weight. J: Synchronization and oscillation indices as functions

of PGC!MC synaptic weight. The default PGC!MC synaptic weight was 4 (indicated by black arrows in I,

J). Error bars denote standard deviations (SD).

https://doi.org/10.1371/journal.pcbi.1005760.g015
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again persisted at approximately the same frequency and power as in controls (controls: 32.4 Hz;

NGC = 400: 33 Hz; compare Fig 16F with Fig 2B). While this variance does not encompass either

the absolute size or the MC-GC ratio of the biological system, it does indicate that gamma oscilla-

tions are not highly sensitive to variations in network size.

Discussion

The olfactory bulb transforms not only the information content of the primary sensory recep-

tor input that it receives, but also its underlying coding metric. Large variance in absolute

input amplitudes across receptor populations, varying on a slow respiratory timescale of

encoding, are transformed by OB neural circuitry into patterns of ensemble spiking activity

among OB principal neurons (mitral cells and projecting tufted cells) that are constrained in

their amplitude variance and regulated on a fast gamma-band timescale. This emergent fast

timescale for signaling is reflected in the gamma-band sLFP oscillations across the OB that are

evoked by afferent activation of OB principal neurons, and presumably serves to efficiently

integrate olfactory sensory information into the temporally regulated information networks of

the central nervous system.

However, the physiological mechanism underlying this transformation has not been clear.

Field potential oscillations at many frequencies are ubiquitous across the brain, and have been

attributed to several different underlying dynamical frameworks. Each such theoretical frame-

work imposes predictable relationships and limitations upon the activities of its constituent

neurons, and defines the capacities and vulnerabilities of the network to changes in input

Fig 16. OB gamma oscillation is robust to variation in network size. A: Raster plot of MC spikes after increasing the number of granule cells in the

model (NGC) to 225. The red arrow designates the onset of odor input. B: Raster plot of GC spikes with NGC = 225. C: Simulated LFP (top) during odor

presentation, with autocorrelation (middle) and frequency power spectrum (bottom), with NGC = 225. D: Raster plot of MC spikes after increasing the

number of granule cells (NGC) to 400. E: Raster plot of GC spikes with NGC = 400. F: As in C, but with NGC = 400. The default network size was NGC = 100.

https://doi.org/10.1371/journal.pcbi.1005760.g016
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statistics or internal parameter values. Multiple such frameworks–including PING, ING, STO-

driven gamma oscillations, and the PRING hybrid mechanism described herein–have been

proposed to underlie OB dynamics; among these, the PRING framework best corresponds to

experimental observations of OB circuit neurophysiology [28, 35, 38]. The diagnostic elements

of this PRING framework are (1) resonant principal neurons that receive external excitation

(unpatterned on the gamma timescale) and exhibit intrinsic STOs, (2) reciprocal connectivity

of these principal neurons with spiking inhibitory interneurons that do not separately receive

afferent input, (3) a PING-like network oscillation that emerges under afferent activation; its

frequency is determined principally by the decay time constant of the GABA(A) receptor con-

ductance and must be higher than that of the STOs, thereby enabling a recurrent reset of STO

phase in participating principal neurons, and (4) a continued dependence on principal neuron

resonance properties during these network oscillations. In the present simulations, excitatory

synapses were spike-mediated; inhibitory synapses were realistically graded but also compati-

ble with GC spiking. Using a biophysically elaborated multiscale computational model of the

OB, we here assessed the capacities and limitations of this PRING framework with respect to

the observed properties of the OB circuit and the requirements of the olfactory sensory

modality.

First, MCs converge onto piriform cortical pyramidal neurons from positions dispersed

across the OB; there is no topographical organization to their projection patterns [73]. Coinci-

dence detection in piriform pyramidal neurons [71, 72] requires that spike timing relation-

ships among converging MCs be regulated by a common clock, so that incoming information

is not dominated by random variance. Therefore, even physically distant MCs must be regu-

lated by this common clock, indicating that EPL oscillations would need to be coherent across

the entire layer, with negligible phase differences among regions. Such spatially extensive zero-

phase coherent networks are nontrivial to construct, particularly in the presence of heteroge-

neous levels of activity among principal neurons. Coupled-oscillator networks in general, and

our model here in particular, can yield robust coherence among excitatory neurons with negli-

gible phase drift and across a wide range of physical scales, provided that there is sufficient

direct long-distance synaptic coupling between distant columns (as provided here by the long

MC lateral dendrites). When long-distance synaptic coupling is reduced in density, the spatial

extent of coherence regions in the OB is correspondingly reduced [35], consistent with theo-

retical predictions [74–76].

Second, the mechanisms generating gamma oscillations should serve to phase-constrain

informative MC spike timing, presumably with respect to a timescale appropriate for the syn-

aptic integration time constants of postsynaptic follower neurons. Indeed, MC spikes are

phase-constrained at the gamma/beta timescale [10, 13], and their follower neurons in piri-

form cortex exhibit key properties of coincidence detectors [71]. However, MCs also exhibit

high levels of uninformative background spiking, and are particularly active in awake/behav-

ing animals [70]. It is therefore equally important that the oscillogenic mechanism of the OB

be robust to high levels of uncorrelated MC spiking. In our model, MC spikes are phase-con-

strained by virtue of intrinsic STO dynamics [28], which are periodically reset by GABA(A)-

ergic synaptic inputs. The dynamical coordination and synchronization of these STOs and

spikes across the full OB model is remarkably robust to the impact of high levels of uncoordi-

nated MC spiking input (Fig 15; see also [77]). This robustness, together with the need for mul-

tiple convergent inputs to activate piriform pyramidal neurons [78], enables postsynaptic

coincidence detectors to selectively respond to informative, temporally-coordinated MC

inputs while disregarding MC background activity.

Third, this common frequency and zero-phase coherence must withstand substantial het-

erogeneity in afferent input levels, both across the network and over time. Heterogeneous
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networks are a challenge to synchronize [63–65], and, under many mechanisms, differentially-

activated local regions of a heterogeneously-activated, spatially extensive network will exhibit

different preferred frequencies [28, 33, 35]. Weak coupling has the capacity to pull such

regions into a common oscillation, though it is generally effective only across a limited range

of preferred frequencies and typically requires several, sometimes many, cycles to achieve syn-

chronization [66, 79–81]. Stronger coupling, such as the STO phase-reset phenomenon of our

coupled-oscillator model, enables a rapid, history-independent coordination among diverse

local (columnar) oscillators across a range of activation levels [79]. The afferent activation-

dependent differences among MCs in the rate of their recovery from synchronous GC-medi-

ated synaptic inhibition have been proposed to generate the spike phase code exported from

the OB [49, 72]; however, for present purposes, the important factor is that this coupling mode

renders global sLFP synchronization robust to the large differences in afferent activation levels

that together constitute the primary sensory representation (Figs 2, 13 and 14). Some dynam-

ical frameworks also are not robust to inhibitory neurons that spike, or to networks in which

excitatory or inhibitory neurons fire at dissimilar rates, or at rates far below the common oscil-

latory frequency. All of these phenomena are features of the OB network, and are robustly sup-

ported by the present model. Finally, global synchronization across the OB must also be robust

to sparse network connectivity, and to substantial differences in synaptic weights across the

EPL, particularly the excitatory synaptic weights that are modified during the process of odor

learning [47, 48]. The present model maintains stable oscillations and global synchronization

with sparse connections and a wide range of excitatory synaptic weights (Figs 11D–11F and

12).

Fourth, notwithstanding the above, there clearly are limits to the range of absolute input

amplitudes that a dynamical system can withstand. The effects of afferent input intensity (con-

centration) are mitigated in animals by a series of compensatory mechanisms [67] capped by a

global normalization network embedded in the OB glomerular layer, essentially feeding back a

global average of input intensity as inhibition onto all MCs. This global normalization function

was proposed a decade ago [51, 59], but the underlying circuit mechanism has only recently

been determined [54]. In the model, as predicted, reduction of this circuit-based concentration

tolerance by modifying PGC inhibition increased mean activity and variance across the MC

population and disrupted spike synchronization (Figs 8 and 15).

PRING oscillations exhibit these diverse and computationally important properties by vir-

tue of their integration of PING and STO mechanics. Two prior conductance-based network

models of OB gamma oscillations also have incorporated both synaptic and STO dynamics

[22, 33], but each reached different conclusions owing to differences in implementation. The

earlier of these models, by Bathellier et al. [22], incorporated STO dynamics in single-compart-

ment MCs, but did not include explicit GCs; instead, MC spikes directly generated recurrent

and lateral inhibition, and there was no graded contribution to synaptic inhibition. In this

model, the resonant properties of MCs were found to play little role in the gamma oscillation,

and the population frequency depended on the rising time constant (rather than the decay

time constant) of lateral synaptic inhibition. The second such model, by Brea et al. [33], incor-

porated explicit MCs and GCs, and exhibited both MC STO dynamics and graded synaptic

inhibition. The Brea model demonstrated that STOs can be synchronized by graded inhibition,

exhibited some STO resetting by this inhibition, and allowed mean MC firing rates to be much

lower than the population oscillation frequency. However, it also differed from the present

PRING model in several ways. First, in the Brea model, intrinsic STO frequencies directly

drove the population oscillation frequency; the time constants of synaptic inhibition played lit-

tle role. To accomplish this, MC STO frequencies were raised to 60–90 Hz, significantly higher

than the 20–40 Hz that has been observed experimentally [28] and implemented in the present
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model. In principle, these high-frequency STOs could prevent the slower synaptic inhibition

from determining the population frequency of the active network, as illustrated above (Fig

7E); however, in the Brea model, the STOs directly determined network frequency even when

slowed to 35 Hz (Fig S5 in [33]). Differences in the properties of synaptic inhibition and GC

spiking are more likely to be the main differentiating factors. Second, synaptic inhibition in

the Brea model was activated at relatively hyperpolarized potentials (-66 mV), exhibited a rela-

tively hard threshold (activated between -66.5 mV and -65.5 mV; Fig 1A of [33]), and was

delivered directly to the single somatic compartment of the model cell. In contrast, in the pres-

ent model, half-activation of the graded inhibitory synapses occurred at -40 mV, the threshold

was much softer (activated between -50 mV and -30 mV), and incoming inhibitory synapses

were distributed along an electrotonically extensive lateral dendrite. Third, the Brea model was

not readily compatible with sparse GC spiking (i.e., GCs that spike at substantially lower fre-

quencies than the population oscillation); in contrast, the present PRING model robustly sup-

ports sparse GC spiking during population oscillations.

In sum, the present model demonstrates that the PRING mechanism elucidated in the OB

network by [35], when embedded in a multiscale, dynamical biophysical model of MC circuit

function, exhibits the full set of dynamical properties that either have been experimentally

demonstrated in the OB or are critical theoretical predictions based on experimental data.

These experiments demonstrate that OB dynamics can be best described as independent

columnar oscillators, coupled by pulsed inhibition, with a network topology based on long-dis-

tance, non-topographically organized connections. This elucidation of the essential dynamics

of OB oscillogenesis will substantially constrain the plausible mechanistic hypotheses for inter-

areal dynamics, such as the transient coherence in the beta band between OB and piriform cor-

tex that characterizes particular phases of olfactory investigation.

Methods

The OB network model

The “default” OB network model contained 25 mitral cells (MCs), 25 periglomerular cells

(PGCs) cells and 100 granule cells (GCs; [25]). Each MC, together with an associated PGC,

represented a separate OB column, each of which was associated with a particular glomerulus

and hence a distinct olfactory receptor type. The number of GCs in the model was increased

substantially in certain simulations. The MC, PGC and GC single-cell models were Hodgkin-

Huxley type conductance-based compartmental models based on those in [25]. In contrast to

the 2013 model, the present OB network incorporated physical locations for each OB column

in order to model the problems of distance-dependent lateral interactions, such as the differing

propagation delays of spikes along MC lateral dendrites [50]. Specifically, the OB surface was

modeled as a two-dimensional (2D) space (1 mm x 1 mm), upon which MCs and PGCs

(together) and GCs (separately) were arranged in grid arrays with equal spacing in the hori-

zontal and vertical directions (Fig 1B). To avoid edge effects, the 2D network was mapped

onto a torus. Each neuron was labeled with its column and row numbers in the 2D space start-

ing from 0 (i.e., MC[i][j] denoted the MC in the ith column and the jth row). In some figures,

model neurons were denoted by a single index to enable their distribution along a single axis

(e.g., in raster plots). In such cases, that single index z was related to the two indices i and j as

follows: z = N � i + j + 1, where N was 5 for MCs and PGCs and 10 for GCs.

Both MC-PGC and MC-GC connections incorporated dendrodendritic synapses (Fig 1A;

[25]). In the model, each MC formed reciprocal synapses with its local PGC (associated with

the same glomerulus); i.e., the MC excited the PGC dendritic spine whereas the PGC inhibited

the MC tuft compartment via graded inhibition (Fig 1A). MCs also interacted bidirectionally
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with GCs along the lengths of the MCs’ lateral (secondary) dendrites, which extend for long

distances across the olfactory bulb [55, 82]. Specifically, MCs delivered synaptic excitation

onto GC dendritic spines while receiving feedback and lateral inhibition from these same

spines (Fig 1A). Each MC connected reciprocally to a random selection of GC dendrites with a

connection probability p = 0.3. To model the cable effects of distance, the location of the den-

drodendritic contact along the length of the seven-compartment MC lateral dendrite [25] was

determined by the distance between the MC soma and the GC in question (Fig 1B).

Synaptic currents

The MC!PGC and MC!GC synapses were mediated by both AMPA and NMDA receptors,

whereas the PGC!MC and GC!MC synapses were mediated by GABAA receptors. Postsyn-

aptic currents were modeled as in [25]:

Isyn ¼WgsynsBðVÞðV � EsynÞ ð1Þ

where gsyn is the maximal synaptic conductance (prior to weighting) and Esyn is the reversal

potential (0 mV for AMPA/NMDA currents and -80 mV for GABAA currents; [25]). The maxi-

mum synaptic conductances were: gAMPA = 2 nS and gNMDA = 1 nS for both MC!PGC and

MC!GC synapses, and gGABA = 2 nS for both PGC!MC and GC!MC synapses [25].W
denotes the synaptic weight, which scaled the maximum preweighting synaptic conductance so

as to generate final maximum synaptic conductances ofW�gsyn. The synaptic weight was varied

systematically in simulations; default synaptic weights were:WMC!PGC = 1,WMC!GC = 1,

WPGC!MC = 4, andWGC!MC = 2 (arbitrary units). The function B(V) implemented the Mg2+

block for the NMDA current, and was defined as B(V) = (1 + [Mg2+]exp(−0.062V)/3.57)−1 83].

For AMPA and GABAA currents, B(V) = 1. The gating variable s represented the fraction of

open synaptic ion channels and obeyed first-order kinetics [84, 85]:

ds
dt
¼ aF Vpre

� �
1 � sð Þ � bs ð2Þ

where F(Vpre) was an instantaneous sigmoidal function of the presynaptic membrane potential,

F(Vpre) = 1/(1 + exp(−(Vpre –θsyn)/σ)). The half-activation potential (θsyn) of the synapse was set

to 0 mV for AMPA/NMDA receptor synapses and -40 mV for GABAA synapses; the parameter

σ was set to 0.2 for AMPA/NMDA currents and 2.0 for GABAA currents [25]. Consequently,

synaptic excitation was triggered mostly by spikes (high threshold), whereas synaptic inhibition

occurred below spiking threshold and depended on presynaptic voltage in a graded manner.

The channel opening rate constants (α and β) were expressed as α = 1/τα and β = 1/τβ, where τα
and τβ were the synaptic rise and decay time constants respectively. For AMPA receptor cur-

rents, τα = 1 ms, τβ = 5.5 ms; for NMDA receptor currents, τα = 52 ms, τβ = 343 ms; and for

GABAA receptor currents, τα = 1.25 ms, τβ = 18 ms [25]. Such first-order synaptic models natu-

rally simulate the interactions of successive presynaptic events, enabling the saturation of slow

synapses [85]. Specifically, with a slow rising time constant of 52 ms, the NMDA conductance

increased only slightly in response to a single presynaptic spike, but accumulated over multiple

synaptic inputs owing to its slow decay time constant of 343 ms, limited by the maximum syn-

aptic conductance. Different synaptic decay time constants have been reported by experimental

studies in the OB [20, 23, 86]; importantly, the modeled time constants represent in part the

“functional time constants” generated by a quasisynchronously activated population of presyn-

aptic synapses affecting the same postsynaptic neuron. Some of these parameters were varied

for purposes of particular simulations as described in the Results; in those cases, the parameter

values specified above are referred to as “default” or “control” values.
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Specific and background inputs

Odor stimulation was modeled as in [25]. A sigmoidal function was used to model OSN inputs

[33]:

IOSN ¼ u0 þ 0:5 us � u0ð Þ tanh
3ðt � tORNÞ

r
� 3

� �

þ 1

� �

ð3Þ

where u0 was the pre-odor value (simulated pure air input) and us the steady-state value after

odor excitation. The parameter r determined the transition rate from u0 to us (set to 100) and

torn the time of odor onset. Different MCs (representing separate, independently-tuned glo-

meruli) received different levels of afferent activation; the corresponding values of u0 and us

were drawn from uniform distributions u0 2 (0.1, 0.2) and us 2 (0.2, 1.0). Additionally, all cells

in the network received random excitatory inputs representing intrinsic and extrinsic sources

of uncorrelated background noise. These nonspecific inputs were modeled as uncorrelated

Poisson spike trains mediated exclusively by AMPA receptors; specifically, they comprised

instantaneous steps followed by exponential decays with a time constant of 5.5 ms [25]. When

plotting major network measures (e.g., MC/GC firing rates, oscillation frequencies, synchroni-

zation and oscillation indices) under variable parameter sets, the data reported were averaged

across 10 instantiations of the network with different random seeds for these Poisson spike

trains.

Simulated local field potential and spike phases

A simulated local field potential (sLFP) was constructed by filtering the mean (somatic) mem-

brane potentials across all MCs [25]. Filtering was carried out numerically using a band-pass

filter (10–100 Hz) with the MATLAB functions FIR1 and FILTFILT [33]. The power spectrum

of the signal was obtained by a fast Fourier transform (FFT) of the filtered sLFP. MC somatic

spike times were converted to spike phases using the method detailed in [25].

Synchronization and oscillation indices

The synchronization (or phase-locking) index was calculated as follows [22]:

k ¼ 1=N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
PN

i¼1
sinðφiÞ�

2
þ ½
PN

i¼1
cosðφiÞ�

2

q

ð4Þ

where φi was the phase of each MC spike in the network relative to the sLFP peak. This syn-

chronization index (SI) measures the degree of phase locking between MC spikes and sLFP

oscillations rather than the absolute synchrony of MC spikes in time. Nevertheless, when sub-

stantial numbers of MC spikes are evoked, the SI also is a good measure of absolute spike syn-

chrony. When all MC spikes have identical phases, the index achieves its maximal value of

unity. The oscillation index (OI) corresponded to the peak of the frequency power spectrum of

the sLFP, which was normalized to the largest peak value generated from ten sets of simula-

tions with different random seeds. The oscillation frequency was determined from the position

of the spectral peak in the power spectrum [25].

Numerical methods

The model was implemented in the neuronal simulator package NEURON, version 7.3 [87],

using the Crank-Nicholson integration method and a fixed timestep of 2 μsec (0.002 ms).

Shorter timesteps did not change the results. Simulations were run both on a workstation

under CentOS Linux and on Linux clusters provided by the Cornell Computational Biology
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Service Unit’s High Performance Computing laboratory (BioHPC). Simulation output data

were saved in files and analyzed using custom Matlab scripts.
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