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Chapter 20

Generative Biophysical Modeling of Dynamical Networks 
in the Olfactory System

Guoshi Li and Thomas A. Cleland

Abstract

Generative models are computational models designed to generate appropriate values for all of their 
embedded variables, thereby simulating the response properties of a complex system based on the coordi-
nated interactions of a multitude of physical mechanisms. In systems neuroscience, generative models are 
generally biophysically based compartmental models of neurons and networks that are explicitly multiscale, 
being constrained by experimental data at multiple levels of organization from cellular membrane proper-
ties to large-scale network dynamics. As such, they are able to explain the origins of emergent properties 
in complex systems, and serve as tests of sufficiency and as quantitative instantiations of working hypoth-
eses that may be too complex to simply intuit. Moreover, when adequately constrained, generative bio-
physical models are able to predict novel experimental outcomes, and consequently are powerful tools for 
experimental design. We here outline a general strategy for the iterative design and implementation of 
generative, multiscale biophysical models of neural systems. We illustrate this process using our ongoing, 
iteratively developing model of the mammalian olfactory bulb. Because the olfactory bulb exhibits diverse 
and interesting properties at multiple scales of organization, it is an attractive system in which to illustrate 
the value of generative modeling across scales.

Key words Generative model, Compartmental model, Olfactory bulb, Subthreshold oscillations, 
Network, Gamma oscillations

1  Introduction

Computational models of neurons and neural systems are con-
structed for many different reasons, from sharply defined proofs of 
concept to the instantiation of intricate working hypotheses. Some 
models emphasize the roles of the membrane and/or cable proper-
ties of individual neurons; others are constructed of highly simpli-
fied neurons in order to efficiently test or illustrate the capacities of 
functional network architectures. Similarly, some models are largely 
independent of specific experimental data, emphasizing the theo-
retical capacities of hypothetical systems or circuits, whereas others 
hew closely to parameters and response profiles estimated via 
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experiment. Each of these approaches can be appropriate for 
addressing particular scientific questions.

Generative, multiscale biophysical models of neuronal net-
works are among the most complex computational model archi-
tectures commonly constructed. They are highly dependent on 
experimental data and generally cannot be usefully attempted 
until sufficient data exist to adequately constrain model parame-
ters. Biophysical models employ equations that directly model 
physical and chemical processes in order to construct larger-scale 
models of the interactions among these processes. For example, a 
biophysical model of a neuron may include equations for the resis-
tive and capacitative properties of the cell membrane (an insulat-
ing lipid bilayer separating two conductive aqueous media), 
equations describing the states, transition kinetics, conductances, 
driving forces, gating properties, and selectivities of transmem-
brane ion channels (including voltage-dependent and ligand-
gated channels of multiple types), equations for the decline of 
voltage differentials along an extended neurite (cable theory), and 
equations describing intercellular signaling via electrical and 
chemical synapses. The dozens to hundreds of parameters typical 
of such models must be given values that enable the whole inter-
connected system, as well as its component parts, to reflect the 
properties of the system being modeled.

Generative models are those that are designed to generate 
appropriate values for all variables in the model, rather than (for 
example) driving certain properties or functions from a “black 
box” in order to study other phenomena more efficiently. For 
example, the membrane potential in a generative biophysical model 
of a neuron should not be directly assigned, but should be an out-
come of the electrochemical balance of open channel conduc-
tances, which in turn are outcomes of the ionic selectivities of 
identified channel types as well as the states of their gating vari-
ables, which often depend in turn upon the membrane potential. 
Importantly, each of these individual variables is meaningful within 
the model, and reflects its biological counterpart. For example, 
increasing the membrane input resistance in such a model should 
increase the cable-theoretic length constant. Increasing the potas-
sium concentration in the extracellular medium surrounding a 
typical neuron should depolarize its membrane potential. What 
will happen to the response properties of a given neuron when the 
hyperpolarization-activated cation current is blocked? What will 
happen when its intracellular calcium levels are strongly buffered? 
Generative models, when adequately constrained by data, should 
be able to predict experimental outcomes, and thereby serve as test 
beds for designing new experiments.

Most generative biophysical models are to some extent multi-
scale. The more explicitly multiscale models emphasize their 
generative properties across scales, from intracellular calcium 
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dynamics to cellular response properties, dendritic integration, 
matrices of synaptic connectivity, and the emergent properties of 
heterogeneous neuronal networks. In such models, nontrivial 
properties at each scale reflect the features of the biological sys-
tem, such that the contributions of molecular properties to large-
scale system functionality can be reasonably assessed within the 
model. Accordingly, such models are powerful tools for experi-
mental design.

We here outline a general strategy for the design and imple-
mentation of generative, multiscale, biophysical models of neural 
systems that contribute meaningfully to the iterative process of sci-
entific inquiry. We illustrate this process using our ongoing, itera-
tively developing model of the olfactory bulb (OB). Because the 
OB exhibits diverse and interesting properties at multiple scales of 
organization, it is an attractive system in which to illustrate the 
value of generative modeling across scales.

2  Model Conception

The neuronal and circuit properties of the OB network have been 
well characterized over generations of study using a great diversity 
of experimental techniques, rendering it a particularly rich system 
for generative biophysical modeling. These studies have high-
lighted a number of “unusual” cellular and circuit properties in 
the OB that diverge from canonical forms and hence have attracted 
further study. Among these, for example, are action potential ini-
tiation in primary dendrites [1], somatofugal spike propagation in 
secondary dendrites, and a triune synapse in which direct excita-
tion and indirect inhibition via the interposed spines of interneu-
rons are evoked by the same afferent input and converge together 
onto principal neuron dendrites [2, 3]. Other specialized neuro-
physiological phenomena studied in the OB also have been 
observed and studied in other areas of the brain—for example, 
intrinsic subthreshold dynamics in principal neurons (discussed in 
[4]) and the evocation of local field potential oscillations, particu-
larly the interplay between the theta and beta/gamma bands, in 
hippocampus (reviewed in [5]). While it is possible that the OB is 
genuinely atypical owing to its adaptation to the particulars of the 
olfactory modality—and it certainly exhibits some unique archi-
tectural properties—it is arguably more likely that some of these 
features simply have become evident in the OB because of the 
intensity of investigation. In other words, important noncanonical 
properties are likely to emerge in most brain circuits given further 
study. This prediction highlights two essential principles of gen-
erative modeling: (1) model design must be, to the extent possi-
ble, open to future elaborations without disrupting the 
foundational principles on which the model is based, and (2) the 

2.1  Establish Model 
Design and Purpose
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process by which cellular and network parameters are reduced 
(simplified) during model construction is critical, and must be 
carefully considered.

The OB is the first center of synaptic integration in the olfactory 
system (reviewed by [6]). The axons of primary olfactory sensory 
neurons (OSNs) converge onto the surface of the olfactory bulb, 
with the axons of OSNs expressing the same odorant receptor type 
(out of a library of hundreds depending on species) converging 
together to form discrete bundles of arborized axonal neuropil 
called glomeruli (Fig. 1). Odorant receptors have reasonably broad 
chemoreceptive fields, such that odor specificity is encoded in repli-
cable patterns of activation distributed across a substantial number 
of receptors and their associated glomeruli. The locations of glom-
eruli associated with particular receptors are substantially conserved 
among conspecifics, but their physical proximity on the OB surface 

2.2  Cellular 
and Network 
Properties 
of the Olfactory Bulb

Fig. 1 The structure of the olfactory bulb. Primary olfactory sensory neurons (OSNs) expressing the same type 
of odorant receptor converge onto common glomeruli. Within a glomerulus, OSN axons synapse with the apical 
dendrites of mitral cells (MC) and two types of juxtaglomerular cells: periglomerular/superficial short-axon 
cells (PG) and external tufted cells (ETs). PG cells make dendrodendritic connections with MC apical dendrites 
and ET cell dendrites within glomeruli; ET cells excite MCs and probably mediate a substantial fraction of the 
afferent input delivered to MCs. In the external plexiform layer (EPL), granule cells (GCs) form reciprocal den-
drodendritic synapses with MC lateral dendrites. Olfactory information then is conveyed to higher cortical 
areas via MC axons. GL glomerular layer, EPL external plexiform layer
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is unrelated to their chemoreceptive fields ([7]; discussed in [8]). 
Activity in these glomeruli is sampled by principal neurons (mitral 
and tufted cells) and by juxtaglomerular interneurons (specifically, 
glutamatergic external tufted (ET) cells and a heterogeneous popu-
lation of GABAergic and dopaminergic periglomerular/superficial 
short-axon (PG/sSA) cells) that mediate computations within each 
glomerulus and across glomeruli in the deep portion of the glo-
merular layer. These circuits effect a high-dimensional contrast 
enhancement operation that is analogous to that mediated by (two-
dimensional) lateral inhibition in the retina [9] and regulated by 
cholinergic neuromodulation [10], and also a global feedback nor-
malization operation that underlies concentration tolerance in the 
olfactory system [11, 12]. Notably, this normalization effect is con-
siderably stronger in mitral than in tufted cells [13].

Deep to the glomerular layer (in mammals), laterally project-
ing dendrites in mitral and tufted cells support spike propagation 
and extend for essentially the full functional circumference of the 
OB. Reciprocal synapses with GABAergic granule cells along these 
dendrites effect lateral inhibition onto other principal neurons, 
though the most strongly weighted lateral synaptic interactions do 
not necessarily arise from neighboring columns, but are largely 
independent of proximity, indicating a distributed rather than a 
nearest-neighbor topology [14]. Moreover, these weights are likely 
to be plastic; the olfactory bulb exhibits substantial functional plas-
ticity, including plasticity associated with adult neurogenesis [15, 
16]. The strengths of these synaptic interactions, and their capacity 
to influence spike timing, also are effectively modified by choliner-
gic neuromodulation [17–19].

Afferent activation of the olfactory bulb evokes synchronous 
gamma-band local field potential (LFP) oscillations that are gener-
ated primarily by these reciprocal MC-GC synaptic interactions 
[20–24], with functional contributions by the intrinsic subthresh-
old dynamics of mitral cells [25, 26]. These LFP oscillations evince 
broadly coordinated driver potentials in OB neurons and the regu-
lation of spike timing. Indeed, synaptic inhibition in this deep layer 
is likely to affect the timing, rather than the existence, of principal 
neuron action potentials (discussed in [8]; [26]), suggesting a 
common clock for coordinating the spiking activity exported to 
other regions of the brain. These gamma oscillations transition to 
a lower (beta) frequency during bidirectional interactions with 
piriform cortex [27, 28], and are embedded within theta-band 
oscillations that can be directly driven by respiration but may also 
be supported by the intrinsic theta-band rhythmicity of ET cells 
[29]. Notably, ET cells may be the primary source of mitral cell 
excitation; mounting evidence indicates that ET cell neurites are 
interposed between afferent fibers and mitral cell dendrites, as well 
as interacting with other juxtaglomerular interneurons in the glo-
merular layer network [12, 30–32].

Generative Biophysical Modeling
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In short, the OB exhibits a wide variety of physiological and 
dynamical properties spanning a range of physical and temporal 
scales. Building a generative biophysical model that faithfully 
incorporates all of these properties such that model manipulations 
can usefully predict experimental results is a complex task that is 
best performed iteratively. This implies, of course, that early itera-
tions of the model must be both extensible and scientifically mean-
ingful despite being substantially incomplete. We here describe our 
process for the iterative development of a generative biophysical 
model of the mammalian olfactory bulb [19, 26].

The first principle of iterative generative modeling is that a manage-
able present goal must be set for a particular project, while also keep-
ing in mind the requirements of projected future goals. Specifically, 
each iteration requires a focused scientific question, or a set of related 
questions, that generates new, testable hypotheses. There must be 
sufficient experimental data, drawn from multiple scales of organiza-
tion, to constrain the model such that any emergent properties of 
interest are likely to reflect reality. More complex models require a 
correspondingly greater amount and wider range of constraining 
data in order to meet this standard, providing an additional reason 
to keep each model iteration as compact as is reasonable.

In addition to limiting the scope of each iteration, it is usually 
necessary to limit the numbers of equations and parameters in the 
model, requiring a strategic reduction of the complexity of parts of 
the model design. This is partially due to the limitations of avail-
able computational power, but also because every free or partially 
free parameter adds degrees of freedom to the operation of the full 
model. Higher degrees of freedom can require more parameteriza-
tion effort, but more importantly they also can reduce the likeli-
hood that an apparent solution will be truly generative. That is, 
including too many underconstrained variables can permit fits to 
data that arise for spurious reasons that do not resemble the prop-
erties of the system being modeled. The solution is to allocate a 
limited budget of complexity to the core principles being explored 
in the current iteration of the model, while reducing other features 
in a manner that facilitates their later expansion.

Typical model reductions include reducing the numbers of 
neurons, reducing the compartmentalization of individual neu-
rons, simplifying calcium dynamics, and omitting cell types that are 
hypothesized to serve little purpose within the scope of the present 
iteration of the model. Each of these simplifications has conse-
quences. In multiscale models, for example, reductions in network 
size nearly always require deviations from measured experimental 
parameters because different properties of the network do not 
scale similarly. For example, reducing an interconnected network 
of a million neurons to a model network of 400 neurons will radi-
cally reduce the absolute number of synapses innervating any given 

2.3  Principles 
of Generative 
Modeling
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neuron. The individual synaptic weights then must be increased in 
order to generate appropriate postsynaptic currents under normal 
activity levels, thereby deviating from the experimentally measured 
values of individual cell-to-cell synaptic weights. Alternatively, the 
density of interconnections could be increased, but this then will 
have consequences for network function—for example, a highly 
interconnected network may become unable to generate a travel-
ing wave of activity, if that is the biological phenomenon to be 
simulated. Determining appropriate scaling strategies is essential.

Finally, of course, the utility of generative models is to make 
experimentally testable predictions. Models that replicate experi-
mental data but do not usefully predict further outcomes are of 
limited utility. This implies that models will sometimes extend 
markedly beyond what current experimental data support, present-
ing hypotheses with unclear bases in experiment. Certainly some 
such models are largely fanciful, or proofs of concept that serve 
other purposes in theoretical neuroscience. However, generative 
models also engage in this projective prediction. This may occur, 
for example, when a number of disparate model constraints at dif-
ferent levels of organization substantially reduce the range of pos-
sibilities beyond what may be intuitively obvious. That is, either an 
apparently projective prediction must be true, or a substantial por-
tion of the model is wrong. Another example is when the genera-
tive model makes a strong prediction at one level of analysis, but 
not necessarily at others. A prediction at a weakly predicted level 
may be ruled out by subsequent experiments without disrupting 
the corresponding strong prediction. For example, the high-
dimensional nontopographical contrast enhancement (NTCE) 
model for glomerular-layer contrast enhancement made the strong 
prediction at Marr’s algorithmic level [33] that there must be 
global feedback normalization in the deep glomerular layer, main-
taining a roughly consistent level of activation among mitral cells 
in response to odors presented at different concentrations [9]. 
Indeed, this was a known property of mitral cell response profiles 
across concentrations [34–36], though the mechanism was unclear. 
Based on contemporary anatomical and neurophysiological data 
(superficial short-axon cells being excitatory and having a mixed 
profile of projection distances; [37]), a weakly predicted 
implementational-level algorithm was developed that mediated 
this global feedback normalization effectively [38]. Subsequent 
experimental data revealed, however, that superficial short-axon 
cells actually project extensively across the glomerular layer, and 
are GABAergic and dopaminergic rather than glutamatergic; 
indeed, they are probably best considered as a single heteroge-
neous cell type together with periglomerular cells, hence their 
depiction herein as PG/sSA cells. It subsequently was conclusively 
demonstrated that PG/sSA cells do indeed effect global feedback 
inhibition across the deep glomerular layer (confirming the strong 
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algorithmic prediction) but via direct, distributed GABAergic/
dopaminergic projections rather than by the predicted mechanism 
(rejecting the weak implementational prediction) [12]. 
Consequently, subsequent iterations of the generative model must 
correct this error in implementation, but the critical algorithmic 
properties of that deep glomerular layer circuit, upon which major 
features of the model depend, now enjoy direct experimental 
support.

We now briefly describe the concrete implementation of our 
present OB model iterations [19, 26], noting in particular the local 
goals of these two iterations and decisions that were made to facili-
tate future model development. We first briefly cover the general 
process of compartmental modeling, which is more extensively 
addressed elsewhere (e.g., [39–41]). We omit direct discussion of 
the earlier iterations preceding these general models, e.g., the glo-
merular circuit models of nontopographical contrast enhancement 
and its cholinergic neuromodulation [9, 10] and the cellular mod-
els of mitral cell intrinsic dynamics [42] and periglomerular cell 
diversity [43].

3  Methods

Most biophysical neuronal models are conductance-based com-
partmental models that contain Hodgkin-Huxley-type ionic cur-
rents, cable properties, and dynamics derived from experimental 
data. The standard approach is to discretize the neuron into a finite 
number of interconnected anatomical compartments, each of 
which comprises a single state for each variable (i.e., a compart-
ment has a single membrane potential, a single calcium concentra-
tion, a single state for each gating variable of each ionic conductance, 
etc.). Importantly, one can accurately model the membrane poten-
tial at the end of a long cable (dendrite) without requiring that 
dendrite to have many compartments; however, the number of 
compartments does determine the spatial resolution of the voltage 
decline along such an extended cable. The schematic of an equiva-
lent circuit for a generic compartmental model is shown in Fig. 2. 
Generally, each compartment expresses a membrane capacitance 
(Cm), a passive leakage current (a fixed resistance Rm associated 
with a battery Em), and a number of active ionic currents (a variable 
conductance Gi associated with a battery Ei). These batteries define 
the reversal potentials of their respective currents, reflecting their 
permeant ions. Based on the equivalent circuit (Fig.  2), we can 
obtain the current balance equation for a representative 
compartment:
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where Vm is the membrane voltage, Ra is the axial resistance, and 
Vm

¢  and Vm
¢¢  are the voltages of the two adjacent compartments. A 

multicompartmental model will consist of a number of coupled 
equations of the form of Eq. 1 [44].

Active transmembrane ionic conductances are usually modeled 
using the Hodgkin-Huxley formalism [45]. Specifically, the con-
ductance of a membrane channel i, Gi, is modeled as:

	 G g m hi i
p q= 	 (2)

where gi is its maximal conductance density, m its activation gating 
variable (with exponent p), and h its inactivation gating variable 
(with exponent q). The kinetic equation for the gating variable x 
(m or h) satisfies a first-order kinetic model,

	

dx
dt

x V x
Vx

x

=
-

f
t
¥ ( )

( ) 	
(3)

where ϕx is a temperature-dependent factor, x∞(V) is the voltage-
dependent steady state, and τx(V) is the voltage-dependent time 
constant. Equivalently, Eq. 2 can be written as:
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(4)

where αx(V) and βx(V) are the voltage-dependent rate constants. 
The parameter values for the rate constants αx and βx, steady state 
x∞, and time constant τx of the gating variables determine the mod-

Fig. 2 Equivalent electrical circuit for two connected generic neural compartments. The membrane potentials 
Vm, Vm

¢  and Vm
¢¢  are associated with each individual, isometric neural compartment. Cm is the membrane 

capacitance, Rm the membrane resistance, Ra the axial resistance, and Em the leakage reversal potential. 
Subscripts 1…i denote i different active (variable) conductances and their associated reversal potentials (e.g., 
conductances G1, G2, etc., with reversal potentials E1, E2, etc.). Conductances Gi are regulated by gating vari-
ables, which may depend on membrane voltage and/or the presence of activating ligands
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el’s dynamical properties and are typically based on cellular electro-
physiological measurements (e.g., from voltage clamp or current 
clamp experiments).

We sought to construct a general OB model that would genera-
tively exhibit intrinsic, activity-gated gamma oscillations that shaped 
mitral cell spike timing. Importantly, the oscillations were to be 
emergent properties of data-constrained mitral-granule cell interac-
tions within the external plexiform layer (EPL), arising from their 
intrinsic cellular and synaptic properties rather than being directly 
driven. The model also embedded glomerular-layer computations 
such as NTCE, though for computational efficiency the costly 
global feedback normalization process was omitted, requiring odor-
ant stimuli to all be presented at similar intensity levels. To provide 
a broader base of constraining data, the first of these iterations 
emphasized the effect of cholinergic neuromodulation (both nico-
tinic effects in the glomerular layer and muscarinic effects in the 
EPL) on OB operation [19]. The second was developed in concert 
with new experimental data and emphasized the origin and dynami-
cal basis for gamma oscillations, including the respective contribu-
tions of EPL network properties and the intrinsic membrane 
dynamics of mitral cells [26], and the capacity of these oscillations 
to maintain negligible phase lag across the entire EPL [46]. These 
models consequently required dynamically accurate mitral cells, 
glomerular layer PG/sSA interneurons, and granule cell interneu-
rons, as well as the appropriate synaptic connectivity. External tufted 
cells, projecting tufted cells, and deep short-axon cells were omit-
ted, but are scheduled for inclusion in future iterations of the model.

After establishing design goals for the model, and considering the 
appropriate complexity of the different model elements, the next 
step is to determine the morphological and physiological proper-
ties of each class of neuron to be represented. Neurons in biophysical 
models are rarely single-compartment “point” neurons, but rather 
comprise a number of interconnected sections corresponding to 
physical elements such as soma, axon and dendrites, each of which 
may comprise one or more—sometimes many more—isometric 
compartments. Examples of the basis for determining the appro-
priate complexity and compartmentalization of model neurons for 
particular model goals follow.

Mitral cells (MCs). MCs have a long primary dendrite ending 
in a glomerular tuft that receives excitatory afferent synaptic inputs 
[47], and extensive lateral (secondary) dendrites that synaptically 
contact granule cell dendrites across the functional extent of the 
external plexiform layer [48]. Our MC model neurons were com-
prised of a soma, a lateral dendrite, an apical dendrite, and a glo-
merular tuft at the distal end of the apical dendrite [19]. The axon, 
which emerges from the base of the cell body [48], was omitted. 

3.2  Olfactory Bulb 
Model Design Goals

3.3  Implementation 
of Cellular Models

3.3.1  Cellular 
Morphologies 
and Compartmentalization
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Each spatially extended section was divided into a number of iso-
potential compartments depending on the spatial resolution and 
the desired space constant or electrotonic length of a particular 
section. For instance, the soma and tuft were each modeled as sin-
gle compartments, whereas the apical dendrite was modeled using 
five compartments to electrotonically separate the spike-generating 
regions of the dendrite and soma from the afferent synaptic input 
location in the tuft [47]. The long lateral dendrite was divided into 
seven compartments in order to model realistic spike propagation 
along the long lateral dendrite and assess the dynamical interac-
tions between the locations of inhibitory synapses and spike propa-
gation [49]. Other biophysical models of MCs contain different 
numbers of compartments, depending in part on the goals of the 
study in question [42, 50–53]. Generally, the number of compart-
ments to implement depends on several factors, including (1) the 
electrotonic length of the neuronal section in question, which 
depends on its length, diameter, total membrane conductance, and 
axial resistivity, (2) the desired spatial resolution (i.e., at how many 
points along the length of the section will its properties need to be 
measured?), (3) the available computational resources, as more 
compartments and mechanisms require more simulation time; 
and, of course, (4) the requirements of the scientific problem being 
investigated.

One critical property of mitral cells that required careful model 
development is their resonance. Mitral cells display intrinsic sub-
threshold membrane potential oscillations (STOs) at frequencies 
ranging from 10 to 50  Hz depending on the mean membrane 
potential [25]. These STOs can constrain the precise timing of 
action potential generation, and their phases can be reset by inhibi-
tory synaptic inputs. They also have been suggested to play a critical 
role in OB gamma oscillations [53], though our models suggest that 
their role in OB network gamma is somewhat more subtle [26].

Periglomerular/superficial short-axon (PG/sSA) cells: As 
described above, PG/sSA cells are heterogeneous in morphology, 
physiology, expression profiles, and connectivity; because the cat-
egories formed by these various differences do not correspond 
with one another, separate cell classes cannot be clearly defined 
(discussed in [43]). Morphologically, PG cells have from one to 
three relatively thick primary dendritic shafts leading to thinner 
branches that ramify within a glomerulus and often (60%) exhibit 
spines (gemmules) [30]. Some PG/sSA cells receive excitation pri-
marily from olfactory receptor neurons (PGo type), whereas others 
are excited primarily by external tufted (ET) cells (PGe type; [30, 
54]). PG/sSA cells also can be divided into four subclasses based 
on intrinsic response properties, described as low-threshold spik-
ing (LTS), adapting, nonadapting and irregular spiking [55], and 
can be further differentiated by their expression of calbindin, cal-
retinin, and/or other molecules [56, 57]. Finally, the arborizations 
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of PG/sSA neurons vary from those that are restricted to one 
glomerulus, to those that innervate a small number of neighboring 
glomeruli, to those that project much more broadly [58], ulti-
mately delivering inhibition across the full extent of the OB glo-
merular layer [12]. As the main purpose of PG/sSA cells in the 
current iterations of our model was to fulfill the NTCE function, 
we initially limited our PG/sSA implementation to the PGo form, 
reserving the more extensive lateral projections and their global 
normalization function for a subsequent model that also includes 
ET cells, their primary synaptic target. Accordingly, we imple-
mented PG/sSA neurons using a soma, a single-compartment pri-
mary dendrite, a spine shaft, and a spine body, omitting the axon. 
Finally, we chose to include only LTS-generating PG/sSA cells, 
since this is the primary observed response profile of this cell class; 
non-LTS responses may be more associated with the broadly pro-
jecting sSA form [55], the feedback normalization function of 
which we omitted from the present iteration of the model.

Granule cells (GCs): GCs make a large number of inhibitory 
synaptic contacts with the lateral dendrites of MCs, via large spines 
that form reciprocal synapses with MC lateral dendrites [59]. 
Inhibitory synaptic transmission from GCs to MCs is thought to 
be graded since isolating GC spines from their somata does not 
impair gamma field oscillations [21], though GCs do spike sparsely 
[60], and effective lateral inhibition may require GC spikes owing 
to the biophysics of spine-spine interactions. Moreover, even 
though GC spikes are not required to activate graded inhibitory 
synapses, the dynamics of GC GABA release are still essentially 
pulsed because release is evoked by MC spikes. The morphological 
features of GCs include several basal dendrites within the vicinity 
of the cell body, and multiple thin (1–2  μm) and long (up to 
600 μm) dendrites projecting to the EPL, wherein they synapse 
with the lateral dendrites of MCs [61].

As with PG/sSA cells, relatively simple GC models can be 
used, as their major function in the present model iteration is to 
provide feedback inhibition to MC lateral dendrites. (Models 
engaging spine-spine interactions, the respective roles of the peri-
somatically generated sodium spike and the dendritically generated 
calcium spike, and activity-dependent synaptic plasticity rules, for 
example, await future iterations). Reduced GC compartmental 
models meet these modest requirements with only a soma, a long 
basal dendrite, and one or more spines [19]. Table 1 shows the 
reduced compartmentalization (with dimensions) of our MC, PG/
sSA and GC model neurons.

The electrophysiological properties of neurons depend mainly on 
their cellular membrane and perimembrane mechanisms, including 
ion channel activity, membrane transport, and calcium dynamics, 
as well as on the physical distributions of these mechanisms across 

3.3.2  Cellular Membrane 
Mechanisms
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the different sections of each neuron type. The inclusion of par-
ticular ion channel species in each section (e.g., soma, dendrite) 
should be based on experimental data and physiological properties. 
For example, the most salient dynamical property of MCs is that 
they exhibit STOs, the frequency of which depends on the mem-
brane potential [25, 48, 62]. Moreover, in response to excitatory 
input, MCs fire intermittent clusters of action potentials (APs) 
interspersed with long period of STOs, and there is a notable delay 
before generation of the first action potential [48, 62]. To replicate 
STOs, the MC model cell was endowed with a persistent sodium 
current INaP and a slowly inactivating potassium current IKS [19, 
42]. An inactivating potassium current IA was included to model 
the delayed onset of firing. Additionally, the MC model cell 
included a regular fast sodium (INa) and a delayed rectifier potas-
sium (IDR) currents for spike generation, and a high-threshold Ca2+ 
current (ICaL) together with a Ca2+-dependent potassium current 
IK(Ca) to enable intermittent burst firing [19].

To model the LTS, the PG/sSA model cell contained a low-
threshold Ca2+ current ICaT [19], along with a hyperpolarization 
activated cation current (IH) that enabled the generation of 
rebound burst firing upon the release of hyperpolarizing input 
[63]. The PG/sSA model cell also included a muscarinic M-current 
(IM), based on the observation that muscarinic receptors are weakly 
expressed in the glomerular layer [64]. Finally, it contained the 

Table 1 
Morphological parameter values and passive electrical properties of MC, PG/sSA (PG), and GC model 
cells (Li and Cleland [19])

Cell type Section Diameter (μm) Length (μm) Cm (μF/cm2) Rm (Ω cm2) Ra (Ω cm) Em (mV)

MC Soma 20 25 1.2 30,000 70 −60

Lateral dend 3.4 500

Apical dend 3.5 370

Tuft 0.5 20

PG Soma 8 8 1.2 20,000 80 −65

Dend 1 100

Spine shaft 1 1

Spine body 1 1

GC Soma 8 8 2 30,000 70 −60

Dend 1 150

Spine shaft 1 1

Spine body 1 1
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spike generation currents INa and IDR, an inactivating potassium 
current IA, a high-threshold Ca2+ current ICaP/N, and a Ca2+-
dependent potassium current IK(Ca) [19].

One important property of GC action potential firing is that it 
produces after-hyperpolarization (AHP) responses following a 
train of action potentials. When muscarinic cholinergic receptors 
on GCs are activated, these AHPs are converted into after-
depolarization (ADP) responses [17], extending the period of 
GABA release and thereby delaying the release of MCs from inhi-
bition. The AHP responses are mediated by both a muscarinic 
M-current (IM) and a Ca2+-dependent potassium current IK(Ca), 
whereas the ADP responses are mediated by a Ca2+- activated non-
specific cation current ICAN [17, 18]. GCs also exhibit a delayed 
onset of spike firing in response to weak current injection, suggest-
ing the expression of an inactivating potassium current IA [65]. 
Moreover, GCs contain both a low-threshold Ca2+ current ICaT and 
a high-threshold Ca2+ current ICaP/N, as well as spike-generating fast 
sodium (INa) and delayed rectifier potassium (IDR) currents [18]. 
Table 2 shows the distribution of active ionic currents in the differ-
ent sections of our MC, PG/sSA, and GC model cells [19].

After determining the compartmental representation of each sec-
tion of MC, PG and GC model cells, and the appropriate mecha-
nisms (with suitable kinetic functions) and densities expressed in 
each, one can begin to implement these models using either general 
computing languages such as C/C++, MATLAB, and Python or spe-
cialized neuronal modeling packages such as NEURON [66], 
GENESIS [67], or MOOSE [68]. General computing languages 
have the advantage of being flexible and efficient, while specialized 
modeling packages provide streamlined functions and utilities to 

3.3.3  Platforms 
for Model Implementation

Table 2 
Distribution of active ionic currents in the MC, PG/sSA (PG), and GC model cells (Li and Cleland [19])

INa INaP IDR IM IA IKS IH ICaL ICaP/N ICaT ICAN IK(Ca)

MC Soma ✓ ✓ ✓ – ✓ ✓ – ✓ – – – ✓

Lateral dend ✓ ✓ ✓ – – ✓ – ✓ – – – –

Apical dend ✓ ✓ ✓ – – ✓ – ✓ – – – –

Glom tuft ✓ ✓ ✓ – – ✓ – ✓ – – – –

GC Soma ✓ – ✓ ✓ ✓ – – – – – – –

Dend and spine ✓ – ✓ – ✓ – – – ✓ ✓ ✓ ✓

PGC Soma ✓ – ✓ ✓ ✓ – – – – – –

Dend and spine ✓ – ✓ – ✓ – ✓ – ✓ ✓ – ✓
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greatly facilitate the implementation of biophysical models. The gen-
eral procedure for implementing cellular models with specialized neu-
ronal simulators includes specifying the cellular morphology, defining 
the kinetics of active ionic currents, and determining the inclusion and 
density of appropriate ionic currents and other mechanisms within 
each section or compartment.

After a basic (unrefined) cellular model has been implemented, 
suitable parameters must be determined so that the model exhibits 
patterns of activity that reasonably and generatively reflect experi-
mental data. Three major parameter types can be considered: mor-
phological dimensions, passive parameters, and active parameters. 
Morphological dimensions are based on experimental measure-
ments of neuronal anatomy (e.g., soma size, the lengths, diame-
ters, and tapering of dendrites and axons). Estimated morphological 
parameters for MC, PG/sSA, and GC cells are shown in Table 1. 
Passive electrical properties include specific membrane capacitance 
(Cm), membrane resistance (Rm), axial resistivity (Ra) and leak cur-
rent reversal potential (Em). These parameters also should be based 
on experimental data; the estimated passive parameters of MC, 
PG/sSA and GC model cells are listed in Table 1 [19].

Active parameters correspond to the kinetics of active ionic 
channels, and include maximum channel conductances, gating 
variables (activation/inactivation, including both steady-state and 
time constant functions), ligand sensitivities (such as for intracel-
lular calcium or extracellular neurochemicals), and intracellular 
Ca2+ release and buffering kinetics. Ideally, these parameters also 
should be based on experimental data. However, such quantitative 
experimental details often are not available. If the kinetic equation 
of an ionic current is not known firsthand, it can be estimated from 
other mechanisms of the same type that are more fully described. 
After such baseline kinetic equations are established, the kinetic 
parameters then can be tuned so that the responses from MC, PG/
sSA, and GC model cells correspond properly with experimental 
data. The most consequential adjustments of these commonly 
underdetermined parameters usually include altering the maximal 
conductance densities, shifting the steady-state activation and inac-
tivation functions, and scaling the time constants.

Parameter estimation can be conducted both via hand-tuning 
and via automated/automation-assisted parameterization meth-
ods. Hand-tuning should be guided by associating specific param-
eters with particular firing patterns of the neurons to the extent 
possible. For example, we know that the persistent sodium current 
INaP and the slowly inactivating potassium current IKS have been 
associated with the generation and maintenance of STOs. By tun-
ing their maximal conductances and the time constants of their 
activation and inactivation variables, one can adjust both the ampli-
tude and frequency of STOs to levels that match experimental 

3.3.4  Parameterization 
of Cellular Models
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recordings [25, 48]. Automated parameterization involves estab-
lishing the response criteria to be matched (e.g., firing rates, burst 
frequencies, number of spikes in each burst, STO amplitude and 
frequency, adaptation levels, etc., each as a function of baseline 
membrane potential), and then selecting searching parameters 
with bounded ranges and using either brute-force simulations with 
post hoc assessment or automated iterative procedures to deter-
mine the optimal parameter sets that best satisfy the matching cri-
teria. Commonly used iterative algorithms include 
conjugate-gradient descent, genetic algorithms, simulated anneal-
ing, and stochastic search [69], though additional methods are 
always under development (e.g., [70]).

Importantly, cellular-level parameter optimizations are likely to 
require further adjustment after instantiation of the larger network 
model, both to adapt to changes effected by new interactions (e.g., 
ongoing synaptic activity) and in order to allow network activity 
profiles to be optimized to better match experimental data at this 
larger scale. Hence, it is wise during cellular model optimization to 
take note of the parameter ranges and tolerances that generate 
acceptable outcomes, as opposed to determining a single opti-
mized set of parameters. This practice will ease the task of deter-
mining parameter sets that reflect both cellular and network activity 
profiles properly and simultaneously.

The first step to develop a functional network is to identify the 
network topology or topologies on which it is based. Most reason-
ably complex networks will have multiple interacting systems of 
connectivity; for example, in the OB, intraglomerular networks, 
the nonspecific feedback normalization interactions across the 
deep glomerular layer, and the specific, probably plastic matrix of 
interactions between MCs and GCs in the EPL each exhibit their 
own topological properties that often can be tuned separately 
before being united into a single larger network. Our OB models 
implemented these embedded topologies by incorporating both 
intracolumnar (e.g., PG/sSA-MC) and intercolumnar (MC-GC) 
computations [19, 26]. One of the goals governing the MC-GC 
interaction topology was to generate a diversity of distances 
between the MC soma and the location of MC-GC synaptic inter-
action, so that spike travel times would be appropriately heteroge-
neous and we could assess whether this was a hindrance to the 
maintenance of coherent gamma oscillations. In the earlier itera-
tion, the locations of GC synapses were randomized along MC 
lateral dendrites [19], whereas in the subsequent iteration, an 
explicit two-dimensional spatial framework was constructed and 
each neuron and synapse located specifically thereon [26].

The size of the network should depend on the particular prob-
lem under investigation as well as the available computational 
resources. For most biophysical models, the size of the network is 

3.4  Connect Cellular 
Models into a 
Functional Network

3.4.1  Determine the Size 
and Topologies 
of the Network
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usually several orders of magnitude smaller than the corresponding 
biological system owing to computational constraints. However, 
this does not preclude the generation of useful insights and infor-
mation from the network model, because by scaling the synaptic 
densities and weights, a relatively small network will often be able 
to produce network behaviors similar to those of larger networks. 
(As noted above, such scaling typically will require that some net-
work features, such as synaptic densities and weights, deviate from 
their measured experimental parameters because different proper-
ties of the network will not scale similarly.) The network size is often 
a parameter of interest, and the relative numbers of neurons of dif-
ferent classes should reflect those of the biological network, too, 
though the actual ratios may deviate substantially (in part owing to 
scaling issues). The importance of this principle of course will 
depend on the goals of the model. For example, the Li and Cleland 
(2013) model [19] includes 25 MCs, 25 PG/sSA cells, and 100 
GCs for a total of 150 model cells; in this model, it was important 
that GCs substantially outnumber the number of OB glomerulus-
associated columns (each comprising one MC and one PG/sSA 
cell), but it was not critical that the GCs outnumber the other cell 
types by orders of magnitude as they do biologically. Subsequent 
models including intraglomerular gap junction-based interactions 
among MCs will of course require multiple MCs per glomerulus; 
models including feedback normalization will include additional 
PG/sSA cells with more extensive lateral projection profiles and 
should incorporate ET cells as well. Designing generative models 
iteratively enables these additional sources of complexity to each be 
incorporated in turn, avoiding the geometric increases in the com-
putational time required for parameterization that can arise when 
trying to optimize too many important parameters at once.

There are two primary ways to model synaptic transmission 
between neurons. The first one is to approximate synaptic conduc-
tance change with a smooth function. For example, the smooth 
shape of the synaptic conductance can be approximated by an alpha 
function [71, 72]:
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where gmax is the maximal synaptic conductance (that can be evoked 
by a single presynaptic spike; such values can be experimentally 
measured) and tp is the peak time at which the conductance reaches 
its maximal conductance gmax. A more general form of analytical 
expression is the double exponential function [67]:
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3.4.2  Select a Suitable 
Synaptic Model 
and Establish Synaptic 
Properties
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where A is a normalization constant chosen so that gsyn has the 
maximal value of gmax, and τ1 and τ2 are synaptic rise and decay time 
constants, respectively. In response to a presynaptic spike input, the 
synaptic conductance will increase to the peak value gmax with the 
time constant τ1 and decay to zero with the time constant τ2.

The major drawback of smooth function models is that they do 
not provide a natural saturation mechanism. In the presence of a 
train of presynaptic spike inputs, a synaptic conductance will build 
up substantially (exceeding gmax in the above definition) for slow 
synapses with a large decay time constant. In addition, smooth 
function schemes only apply to spike-mediated synaptic interac-
tions (i.e., the synapse is activated by spike input); they cannot 
model graded synapses, in which the synaptic conductance depends 
on the presynaptic membrane voltage in a graded manner. Another 
way to model synaptic conductance is to use a first-order kinetic 
model [53, 73, 74]:

	
g g ssyn = max 	

(7)

where the gating variable s represents the fraction of open synaptic 
ion channels and obeys first-order kinetics

	

ds
dt

F V s s= ( ) -( ) -a bpre 1
	

(8)

where α and β are the channel opening rate constants, and F(Vpre) 
is an instantaneous sigmoidal function of the presynaptic mem-
brane potential Vpre:

	
F V Vpre pre syn( ) = + - -( )( )( )1 1/ exp /q s

	
(9)

The half-activation potential θsyn and the gradedness parameter σ 
determine whether the synapse is spiking or graded. For spiking 
synapses, θsyn is set to a relatively high value (e.g., 0 mV) and σ is 
relatively small (e.g., 0.2), such that the activation threshold is 
hard or steep. In contrast, for graded synapses, θsyn is set to be 
below the spiking threshold (e.g., −50 mV) and σ is relatively large 
(e.g., 2) so the activation threshold is much softer. In our OB net-
work models [19, 26], excitatory glutamatergic synapses were 
mediated by AMPA/NMDA receptors whereas the inhibitory syn-
apses were mediated by GABAA receptors. We used spiking syn-
apses for the AMPA/NMDA synapses and graded synapses for the 
GABAergic synapses (although, as noted above, their activity still 
was largely pulsed owing to their activation by MC spikes). The 
advantage of this first-order kinetic model is that it innately models 
synaptic saturation correctly and the peak synaptic conductance is 
clamped at gmax. That is, the gmax parameter directly represents the 
actual maximum conductance of the synapse (all channels open, all 
gating variables = 1), and hence by definition cannot be exceeded.
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Regardless of the type of synaptic model, the synaptic time 
constants should be estimated based on experimental data, as they 
can be major determinants of network function. Synaptic currents 
Isyn are calculated as:

	
I Wg V Esyn syn syn= -( ) 	

(10)

where W is the synaptic weight, V is the current membrane 
potential of the compartment, and Esyn is the synaptic reversal 
potential. For AMPA/NMDA currents Esyn is around 0 mV, while 
for GABAA currents, Esyn is about −80 mV. The synaptic weight is 
a scaling factor that must be scaled properly so that a reduced 
network can generate realistic activity patterns matching those of 
the biological network, and also is modifiable for plastic synapses 
during learning. Odor learning in the OB depends on the modi-
fication of intrinsic synaptic weights [15, 75], as well as the incor-
poration of adult-born neurons [76, 77]. Note that although we 
varied synaptic weights systematically in our present OB model 
iterations to examine their impact on network dynamics [19, 26], 
we did not model synaptic plasticity explicitly. Implementation of 
synaptic plasticity will be critical in future iterations of the model 
to investigate how odor representations change with learning and 
experience [78, 79].

Sensory systems generally need to receive external input to gener-
ate meaningful activity. There are two types of external inputs: ran-
dom nonspecific background inputs and task-specific inputs (in the 
present context, odor input in the OB). Random background 
inputs represent both intrinsic and extrinsic sources of background 
noise and generate characteristic profiles of spontaneous network 
activity. In our OB model [19], all the neurons in the network 
received independent Poisson-distributed spike trains. In contrast, 
the afferent odor input was modeled by a sigmoidal function [53]:

	
I u u u

t t

rsOSN
ORN= + -( )

-( )
-

æ

è
ç

ö

ø
÷ +

é

ë
ê
ê

ù

û
ú
ú

0 00 5
3

3 1. tanh
	

(11)

where u0 is the preodor value and us the steady-state value after 
odor excitation. The parameter r determines the transition rate 
from u0 to us and torn the time of odor onset. Periodic stimulation, 
replicating respiration or higher-frequency investigative sniffing, 
also can be effectively used. In either case, MCs and PG/sSA cells 
in independently tuned glomeruli received different levels of affer-
ent input, simulating the differential activation of distinct receptor-
associated glomeruli as a function of odor quality (Fig. 1). Similar 
profiles of receptor activation denoted correspondingly perceptu-
ally similar odorants.

3.5  Network 
Simulation

3.5.1  Provide Inputs 
to the Network
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After the network is fully implemented, simulation parameters 
must be selected, including the integration method, integration 
timestep, and total simulation time. Chiefly, the integration 
timestep needs to be small enough to ensure the accuracy of simu-
lation results; however, shorter timesteps require correspondingly 
greater computational resources. A rule of thumb is to progres-
sively reduce the integration timestep until no significant differ-
ence in stimulus output is produced. Simulation data should be 
saved into files for subsequent analysis.

As with cellular simulations, the results of network simulations 
must reasonably replicate the network activity in the biological sys-
tem. Common assessment criteria include spontaneous and odor-
evoked firing rates in each neuron type, temporal firing patterns, 
LFP signals (extracellular potential changes generated by a group 
of neighboring neurons) and effects under neuromodulation. 
Significant discrepancies between the simulation results and exper-
imental data suggest the need for further parameter fitting. Major 
network parameters include synaptic connection densities, synaptic 
weights, synaptic delays, and synaptic time constants. In some cir-
cumstances, some reparameterization of cellular models will be 
necessary in order to generate proper network level responses. 
Under such circumstances, as discussed above, the determination 
of parameter tolerances in cellular models to limit the range of 
acceptable parameters becomes particularly important. For exam-
ple, the intrinsic STO frequency may constrain the gamma oscilla-
tion frequency of the OB network. After the network has been 
properly parameterized, the model then can be used to study a 
range of problems in olfactory information processing such as odor 
discrimination and recognition, mechanisms of LFP oscillations, 
and the effects of neuromodulation. In particular, insights and pre-
dictions from the model can be used to guide experimental design.

Best practices for visualization and analysis of simulation data are 
to save the simulation data into files and then to visualize and ana-
lyze them using general computing languages such as MATLAB or 
Python. Common raw data visualizations include plots of mem-
brane voltage traces of representative neurons, conductances of 
representative transmembrane currents and synapses, and spike ras-
ter plots of the whole network. Major network activity patterns can 
be visualized and quantified by perievent time histograms (PETH), 
firing rates, oscillation power and frequency, spike phase plots, and 
synchronization and oscillation indices. For oscillation analyses, a 
simulated local field potential (sLFP) can be constructed from any 
number of cellular timeseries and filtered within a certain frequency 
range. For example, we constructed a global sLFP by filtering the 
mean (somatic) membrane potentials across all MCs in the 2D OB 
network model [26]. Filtering was accomplished with a band-pass 

3.5.2  Run Network 
Simulation

3.5.3  Parameter Fitting 
(Multiscale Criteria)

3.6  Visualization 
and Analysis 
of Simulation Data
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filter (10–100  Hz) using the MATLAB functions FIR1 and 
FILTFILT.  The frequency power spectrum of an sLFP can be 
obtained by a fast Fourier transform (FFT) of the filtered sLFP. The 
network oscillation frequency then can be estimated from the loca-
tion of the spectral peak in the power spectrum. Other visualiza-
tion and analysis methods also may be used depending on the 
scientific problems of interest.

In summary, the development of generative biophysical models of 
dynamical networks in the olfactory system involves clearly deter-
mining the design goals and the appropriate model complexity, 
implementing cellular models with parameter optimization, con-
necting cellular models into a functional network with further 
parameter fitting, and analyzing the simulation data. Generative 
model development is usually an iterative process with extensive 
parameter searching so that the network output comes to closely 
reflect existing experimental data. Partitioning long-term model 
plans into achievable steps is necessary to construct more complex 
generative models. Critically, each of these steps must be carefully 
conceived and adequately constrained by neurophysiological data, 
and embedded within a flexible, multiscale architecture to facilitate 
future model extensions. We here illustrate the development pro-
cess of a generative, multiscale, biophysical model of the mamma-
lian olfactory bulb [19, 26], which, owing to its diverse cell types, 
interesting circuit architectures, and intricate cellular and network 
dynamics, is a particularly rich platform for illustrating generative 
model design.
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