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Definition

Computational modeling is an essential tool for
developing an understanding of how nervous sys-
tems compute. This is particularly so for questions
that span levels of analysis, attempting to integrate
cellular, neuromodulatory, and electrophysiologi-
cal data with behavioral performance. In neuro-
science, computational techniques are used to
study the mechanisms underlying neuronal or net-
work responses to simple and complex inputs,
analyze interactions among the parameters
governing the properties of a neuron or network,
and determine the coordinated mechanisms that
underlie experimentally observed rich phenomena
such as coherent oscillations or synaptic plasticity.
In particular, computational modeling has been
successful in associating neural activity with
behavioral function, proposing neurophysiologi-
cal mechanisms for observed behavioral capabil-
ities, and generating novel, testable hypotheses. In

our lab, computational models of behavioral phe-
nomena have enabled us to elucidate relationships
among odorant physical properties, top-down
neuromodulatory signals, olfactory neural net-
work operations, and odor perception. We here
briefly review this approach and highlight some
examples from the last ten years.

Detailed Description

Our standard approach to modeling olfactory
behavior is as follows: (1) determine via behav-
ioral pharmacology or similar experiments which
olfactory brain areas are likely to underlie a cer-
tain aspect of olfactory perception; (2) create a
computational simulation of those brain areas,
incorporating as much constraining experimental
detail as possible given the level of modeling
chosen; (3) use the model to simulate specific
relationships between neural activity patterns
and perception, generating testable hypotheses;
and (4) based on these hypotheses, perturb both
experimental and computational variables via
lesions, training parameters, pharmacology, and
other experimental tools. The outcome of these
studies then serves to inform the computational
models and help determine the direction of future
study.

One critical aspect of this process is the selec-
tion of the level of detail at which to build the
model. Our modeling is nearly all based on
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specific neural systems – as opposed to generic
neural networks – but the level of detail
implemented must be appropriate given the avail-
able experimental data in order for the model to
contribute meaningfully to this research approach.
More abstract models of particular networks,
made with relatively reduced, single-
compartment neurons, are appropriate when the
data include general information about neurons
being excitatory or inhibitory, reasonable esti-
mates of synaptic connectivity patterns, and
neuromodulator effects that are thought to excite,
inhibit, and/or affect the excitability of particular
cell types. Building simpler models with fewer
free parameters enables a relatively efficient
exploration of what such a network can do, and
how the different effects of neuromodulators, for
example, could combine to produce a functional
outcome that corresponds to behavioral data. Fol-
lowing up on hypotheses generated by such
models can increase the efficiency of experimen-
tal design, ultimately producing data sufficient to
build the richer and more complex biophysical
models.

Biophysical models require considerably more
experimental data in order to be useful. They
define physical membrane properties such as sur-
face area, capacitance, and cell morphology,
model many individual mechanisms such as
sodium channels, calcium diffusion, and NMDA
receptors, deploy these mechanisms into or with
respect to the cell membrane, and often are mor-
phologically multicompartmental. Oligocom-
partmental model neurons, in particular, are built
using perhaps 2–20 compartments that may serve
to accurately model spike propagation times, seg-
regate electrotonically distant parts of the neuron,
construct cells with heterogeneous channel distri-
butions, and/or implement other phenomena in
which spatial heterogeneity matters. (Neuron
models with hundreds of compartments, in con-
trast, usually are constructed to replicate the arbor
of a specific neuron measured from imaging data.)
If there are constraining data for enough of these
parameters, then such models are singularly pow-
erful, as they are able to implement underappreci-
ated computational elements like shunt inhibition,

intrinsic resonance properties, and the partial iso-
lation of spines, and at their best they can predict
the network-level consequences of, for example,
localized effects on ion channel properties. In the
absence of sufficient data, however, such models
lose most of their predictive value, as they simply
contain too many free parameters which, if
unconstrained, can enable meaningless fits to
many datasets; simpler models should be used in
such situations. Irrespective of the level of com-
plexity, however, useful models usually do not
simply replicate established data but employ
their capacity to quantify and juxtapose diverse
datasets in order to explain what is known and
explore what that might imply. Models can range
from being quite tightly based on cellular data
(e.g., Li and Cleland 2013, 2017) to being more
speculative (e.g., Linster and Cleland 2010), but
in either case the task is to understand how best to
ask the next question. While models that stand the
test of time are laudable, models that are subse-
quently superseded by new data have served their
scientific purpose well.

Over the past quarter century, we have devel-
oped computational models of many behavior-
related processes within olfaction, including the
cholinergic, noradrenergic, and dopaminergic
modulation of bulbar circuitry (Linster and
Gervais 1996; Hasselmo et al. 1997; Linster and
Hasselmo 1997; Linster and Cleland 2002;
Linster et al. 2003; Mandairon et al. 2006a;
Escanilla et al. 2009; Linster et al. 2011; Devore
and Linster 2012; Devore et al. 2012; de Almeida
et al. 2013; Li and Cleland 2013; Devore et al.
2014; de Almeida et al. 2015; Li et al. 2015; de
Almeida et al. 2016), perceptual learning
(Mandairon et al. 2006b), mixture processing in
the olfactory bulb (Linster and Cleland 2004), the
bulbar mechanisms regulating differentiation
among similar odors (Cleland and Sethupathy
2006; Cleland et al. 2007; Cleland et al. 2012),
the role of spike synchronization in antennal lobe
odor processing (Linster et al. 1994; Linster and
Cleland 2001) and synaptic plasticity in olfactory
bulb and cortex (Linster et al. 2007; Linster et al.
2009; Linster and Cleland 2010; Mandairon et al.
2014), the dynamical mechanisms underlying
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lateral communication and synchronization across
the bulbar circuit (David et al. 2008, McIntyre and
Cleland 2016; Li and Cleland 2017), and the
multiple concerted processes required to enable
concentration invariance in odor perception
(Cleland and Linster 1999; Cleland et al. 2007;
Cleland et al. 2012). In each case, a critical factor
affecting model validity has been the comparison
between model output and behavioral results.
How does one determine whether and how the
values of model output variables correspond to
measured indices of behavior? While this is
always ultimately an experimental question, we
have determined several behavioral indices that
can be reliably predicted by specific output met-
rics from our computational models, including
perceptual similarity, discrimination performance,
learning rate, memory capacity, and memory per-
sistence. For example, we first demonstrated that
the pairwise overlap in neuronal activation pat-
terns across the olfactory bulb input layer could
predict pairwise perceptual similarity (Linster
et al. 2001; Cleland et al. 2002). To the extent
that this result is generalizable as a basic principle
of olfactory coding, one then can, in subsequent
studies, compare changes in pairwise overlap
within the computational model to behavioral
changes in perceptual discrimination. This in
turn enables, for example, the effects of
neuromodulators on olfactory discrimination to
be modeled and tested against behavioral data
(e.g., Mandairon et al. 2006a). Importantly,
while this principle of pattern overlap among glo-
meruli has been largely supported experimentally,
its basis is inductive and it cannot be reliably
extrapolated; e.g., it may not extend reliably to
spatial patterns among mitral cells, or within
piriform cortex. Like theoretical models in gen-
eral, these models serve to organize our under-
standing of complex data sets until a superior
theory can be constructed.

We here describe three specific examples of the
modeling of olfactory behavior that provided use-
ful insights into the underlying neural mecha-
nisms. First, an abstract model of spike timing
and oscillations in the honeybee antennal lobe
explained how neuronal synchronization patterns

could underlie seemingly paradoxical behavioral
generalization effects observed across different
odor concentrations (Linster and Cleland 2001;
Cleland and Linster 2002; Linster and Cleland
2010). Second, a large-scale, reduced model of
olfactory bulb outlined a feedback normalization
network enabling concentration invariance in bul-
bar output, consistent with behavioral perfor-
mance (Cleland et al. 2007). Third, a moderately
detailed computational model of cholinergic mod-
ulation in the olfactory bulb glomerular layer pre-
dicted coordinated network-level and behavioral
outcomes from the properties and localization of
nicotinic cholinergic receptors in the olfactory
bulb (Mandairon et al. 2006a; de Almeida et al.
2013; Devore et al. 2014; de Almeida et al. 2016.

Example 1: Odor Concentration and Spike
Timing in the Insect Antennal Lobe
Honeybee olfaction is an important model system
for olfactory learning due to its well-developed
and efficient behavioral conditioning paradigms
and the relatively well-understood neural circuits
involved in odor learning. The behavioral rele-
vance of spike timing regulation in olfaction was
first demonstrated in the honeybee antennal lobe,
in which it was demonstrated that stimulus-
evoked synchronous spiking was necessary for
fine odor discrimination. Specifically, in com-
bined electrophysiological and behavioral experi-
ments, when fine-scale spike synchrony was
disrupted, bees’ odor discrimination performance
was impaired, even though the overall profile of
evoked activity in antennal lobe neurons remained
intact (Stopfer et al. 1997; Stopfer et al. 2003).
Using the same behavioral paradigm, it subse-
quently was demonstrated that honeybees dis-
criminate odorants better when they are
presented at high concentrations than when they
are presented at lower concentrations (Bhagavan
and Smith 1997). Neurophysiologically, this
result was counterintuitive because calcium imag-
ing studies have shown that higher concentration
odor stimuli activate correspondingly larger and
more overlapping areas of the antennal lobe
(Strauch et al. 2012), which, given that overlap
predicts perceptual similarity, should result in
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poorer discrimination. Computational modeling
resolved this behavioral conundrum by combin-
ing the findings of these two lines of research
(Linster and Cleland 2001; Cleland and Linster
2002). The model exhibited oscillations and spike
synchronization patterns similar to those recorded
in the antennal lobe and demonstrated that while
higher-intensity odor inputs would evoke broader
neural activity overall, an increasingly narrow
subpopulation of neurons within this broad
ensemble would be increasingly strongly syn-
chronized. Synchrony-sensitive follower neurons
and plasticity processes responding selectively to
these highly synchronous inputs would therefore
interpret higher-concentration inputs as more dis-
criminable from one another, matching behavioral
observations, while blocking these synchroniza-
tion processes would impair fine odor discrimina-
tion. In contrast, lower-concentration inputs
would evoke weaker synchrony among antennal
lobe projection neurons and generate less activity
or plasticity in follower cells (Fig. 1). This work
illustrated how computational modeling can fuse
separate datasets derived from a common system
to explain seemingly unrelated results,
constructing a common theoretical basis upon
which subsequent experiments can be based.
Since this time, the study of spike synchronization
processes within olfactory coding research has
grown substantially, particularly with the elabora-
tion of timing-dependent synaptic plasticity algo-
rithms in the brain (Song et al. 2000; Gao and
Strowbridge 2009; Linster and Cleland 2010).

Example 2: The Problem of Concentration
Invariance in the Olfactory Bulb
Odorants elicit widely distributed patterns of
activity across the olfactory bulb input layer, as
evidenced by 2-deoxyglucose activity mapping
(Johnson and Leon 2000), intrinsic imaging
(Meister and Bonhoeffer 2001), and other imag-
ing techniques. These activation patterns are sub-
stantially altered when odor concentration is
changed (Johnson et al. 1999; Johnson and Leon
2000; Meister and Bonhoeffer 2001), to the extent
that the pattern evoked by a given odor may more

closely resemble that of a different odor than that
of itself when presented at a different concentra-
tion (Cleland et al. 2007). Despite this fact, ani-
mals can identify a given odor over a reasonable
concentration range, and – critically – neural
response patterns at the output of the olfactory
bulb are less affected by odor concentration than
are those measured at the input. Interestingly,
simple normalization (z-scoring) of these odor-
evoked patterns rendered them reasonably consis-
tent across concentrations (Johnson et al. 1999;
Johnson and Leon 2000), and behavioral tests
measuring the pairwise perceptual similarities of
odorants showed that perception was better pre-
dicted by normalized activity patterns than by
nonnormalized activity (Cleland et al. 2007)
(Fig. 2). These results, together with physiological
demonstrations that mitral cell spike rates do not
monotonically increase with odor concentration
(Harrison and Scott 1986; Wellis et al. 1989;
Meredith 1986), suggested that these odor-
specific patterns are actively normalized within
olfactory bulb circuitry. Computational modeling
based on these data, and on contemporary under-
standings of cellular properties in the olfactory
bulb, demonstrated how these neural circuits in
the olfactory bulb glomerular layer could perform
such a normalization function. Specifically, a lat-
erally interconnected network of interneurons,
then believed to be excitatory, synapsing onto
local inhibitory interneurons and with a broad
distribution of lateral projection distances esti-
mated from anatomical data (Aungst et al. 2003),
was shown capable of performing feedback nor-
malization uniformly across the bulb (Cleland
et al. 2007). These simulations showed that a
partially localized network of microcircuits
could underlie a nonlocalized, uniform effect, uti-
lizing this small-world effect to normalize mitral
cell odor responses in order to render them more
concentration-invariant. In this example, behav-
ioral experiments were necessary to validate the
basis for the computational model by demonstrat-
ing that global normalization correctly predicted
perceptual similarities. Interestingly, in subse-
quent experimental studies, the role of these
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Fig. 1 Synchronization and odor perception in the hon-
eybee antennal lobe. (a) Network diagram of honeybee
antennal lobe model. The network was created based on
known neuron types and was capable of generating odor-
evoked, GABAergic neuron-dependent field potential
oscillations that shaped spike timing as described experi-
mentally. Briefly, input from olfactory sensory neurons
(SNs) directly activates projection neurons (PNs) as well
as inhibitory local interneurons (LNs). Local interneurons
are reciprocally connected with each other in a feedback
network which generates synchronous oscillations when
activated. Local interneurons also inhibit projection neu-
rons and are capable of synchronizing projection neuron
spikes with respect to these network oscillations. Because
local interneurons in the model have higher activation
thresholds than projection neurons, highly activated glo-
meruli oscillate more strongly and the corresponding pro-
jection neurons are most strongly synchronized. The
associative neuron (AN), corresponding to the reward-
activated neuron VUMmx1 in honeybees, is sensitive to
synchronized spike inputs. (b) In the model, increasing
odor concentration at the input of the antennal lobe gener-
ates more widespread activation patterns and hence
increased overlap among odor representations
(Bi designates a lower concentration odorant, Bii a higher

concentration odorant). Each circle represents a glomeru-
lus receiving input from sensory neurons expressing a
shared olfactory receptor; darker colors symbolize stronger
activation and striped glomeruli indicate glomeruli sub-
stantially activated by both inputs. Glomeruli are mapped
onto a hypothetical one-dimensional circular axis of recep-
tive field similarity (Cleland and Linster 2002). O1 and O2
denote the centers of the glomerular patterns activated by
two different odors. (c) Increased odor concentration also
generates stronger oscillations in activated glomeruli,
resulting in greater synchrony among a narrower popula-
tion of the most strongly activated projection neurons. (d)
Increased synchrony leads to reduced generalization
between two odors presented at higher concentrations
than when presented at lower concentrations, despite
their larger overlap at the input to the antennal lobe. Odor
conditioning was simulated by presenting a conditioning
odor stimulus to the model at a low (25% of maximum
activation) or high (100% of maximum activation) inten-
sity and training the network on the odor. Subsequently, the
network was presented with a novel odor and the degree of
overlap between the representations of the conditioned and
novel odors was calculated (generalization). The graph
shows the degree of generalization to the novel test odor
after conditioning at low and high stimulus intensities.
(Figures adapted from Cleland and Linster (2002))
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laterally projecting interneurons in broadly
inhibiting mitral cells across the olfactory bulb
was confirmed (Banerjee et al. 2015), even though
the interneurons themselves since have been
shown to be GABAergic and dopaminergic, rather
than glutamatergic as was previously believed
(Kiyokage et al. 2010). That is, the 2007 model
proved correct at Marr’s (1982) computational

level (normalization at this level of the olfactory
bulb network was required in order to explain
experimental results) but not at the implementa-
tion level (the mechanism by which this normal-
ization is achieved was incorrect in that model).
This provides an excellent example for how a
model can serve its purpose, being correct at a
certain level and enabling the coordinated
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Fig. 2 Normalization in the olfactory bulb glomerular
layer. (a) Schematic depiction of odor representations in
the olfactory bulb glomerular layer. Odorants are ordered
along a hypothetical axis of similarity onto which individ-
ual glomeruli can be mapped. Note that this is purely for
representational purposes and that such orderly mapping
does not exist in the system. Glomerular activation
becomes stronger and spreads by activating additional
glomeruli as odor intensity increases; consequently, the
overlap between two odor representations increases. (b)
Despite the increase in overlap between odorants at higher
concentrations, rats and mice can differentiate odorants
better as concentration increases. The graph shows the
percent correct trials in a forced choice go/no-go task in
rats as a function of odor concentration (Wei et al. 2006).

(c) In certain cases, the raw and normalized activation
patterns evoked by a given odorant at different concentra-
tions are more different from one another than they are to
the representation of an entirely different odorant. The
graph depicts (black lines) indices of dissimilarity between
glomerular activation patterns, calculated from raw or nor-
malized 2-deoxyglucose uptake data, computed between a
single odor (a) presented at two concentrations and
between that odor and a different odor (b), both presented
at the same concentration (Cleland et al. 2007). For com-
parison, the graph also depicts (red line) the corresponding
behavioral results (i.e., degree of perceptual dissimilarity)
in response to the same odor pairs. The normalized activa-
tion patterns predict behavioral perception, whereas the
raw data do not
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interpretation of diverse datasets, while also
becoming outdated by experimental progress and
requiring update or replacement. It is also impor-
tant to emphasize that computational operations in
neural circuits are necessarily embedded in
broader networks that can enhance, impair, or
prevent their function. Concentration tolerance
in olfaction, for example, is not mediated solely
by this single circuit; rather, its operation depends
on multiple prior circuit computations that estab-
lish important prerequisites for its success
(Cleland et al. 2012).

Example 3: Effects of Nicotinic Receptor
Activation on Odor Discrimination –
Behavioral Experiments and Biophysical
Modeling
The cellular effects of nicotinic cholinergic recep-
tor activation in the olfactory bulb are relatively
well understood (Castillo et al. 1999; Pressler
et al. 2007). Nicotinic cholinergic activation
opens cation currents both in mitral cells, exciting
them and increasing their odor-evoked activation
levels, and in GABAergic periglomerular cells,
increasing their inhibition of mitral cell primary
dendrites. Hence, nicotinic receptor activation
simultaneously excites and (indirectly) inhibits
mitral cells in the bulb – two effects that initially
might appear to cancel one another out. However,
computational modeling of these two neuron
types embedded within their glomerular microcir-
cuit showed that, rather than canceling each other
out, these two effects complement one another
(Linster and Gervais 1996; Linster and Hasselmo
1997; Linster and Cleland 2002). Specifically,
while the increased inhibition on mitral cell pri-
mary dendrites sharpens mitral cell responses to
odorants by suppressing weak responses, the con-
comitant excitation near the soma maintains or
enhances the strength of response within this
narrower receptive field. As a consequence, recep-
tive fields are sharper but stronger (Mandairon
et al. 2006a; de Almeida et al. 2013; Devore
et al. 2014; de Almeida et al. 2016; Li and Cleland
2013). When comparing ensemble responses to

multiple odorants in this model, the overlap in
mitral cell activation patterns is reduced when
nicotinic receptors are activated, separating the
representations of highly similar odors and pre-
dicting that they would become easier to discrim-
inate. We tested this prediction behaviorally and
found that, indeed, the blockade of nicotinic cho-
linergic receptors in the olfactory bulb reduced
rats’ capacity to differentiate between perceptu-
ally similar odorants, whereas it did not affect the
perception of chemically and perceptually dissim-
ilar odor pairs. Moreover, enhancing cholinergic
modulation during behavior improved rats’ ability
to differentiate between perceptually similar odor-
ants (Mandairon et al. 2006a; Chaudhury et al.
2009) (Fig. 3). In this study, the known cellular
effects of nicotinic receptor activation were suffi-
cient to predict perceptual effects once
constructed into an appropriate network model,
suggesting that the computational model captured
the essence of this neuromodulatory process. Sub-
sequent behavioral and computational studies fur-
ther suggested that this reduced overlap in bulbar
representations enables more rapid cortical learn-
ing and that cortical and bulbar cholinergic mod-
ulatory responses act in concert to establish
efficient and stable learning processes
(de Almeida et al. 2013; de Almeida et al. 2015;
de Almeida et al. 2016).

Conclusion

Computational modeling of the neurons and net-
works of the brain provide essential tools and
frameworks for understanding the neural mecha-
nisms underlying animal behavior. By juxtapos-
ing diverse experimental results within
appropriate theoretical frameworks, constructing
functional scenarios, and assessing the likelihood
and consequences of each, modeling facilitates
the theoretical analysis of complex datasets and
the construction of testable hypotheses, providing
an essential link between physiology and
behavior.
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Fig. 3 Nicotinic cholinergic neuromodulation of odor
discrimination in the olfactory bulb glomerular layer. (a)
Schematic of a simplified glomerular microcircuit anno-
tated with relative spike rates to indicate levels of activa-
tion. Olfactory bulb output neurons (mitral cells; Mi) and
GABAergic interneurons (PG) receive direct afferent input
from sensory neurons (OSNs). PG cells directly inhibit
mitral cells and suppress their responses to weak inputs
(left panel), whereas strongly activated mitral cells over-
come this inhibition (right panel). Both PG and mitral cells
express nicotinic cholinergic receptors and are further acti-
vated by cholinergic neuromodulation. (b) Effects of nic-
otinic receptor activation. Graphs depict the tuning curves
of neuron types to a range of similar odorants; the abscissa
depicts a hypothetical axis of odor similarity. Top panel,

Activity profiles in the unmodulated state. PG inhibition
inhibits the weakly excited edges of the OSN odor repre-
sentation, sharpening the resulting mitral cell representa-
tion (Cleland and Sethupathy 2006; Cleland and Linster
2012). Bottom panel, Effects of nicotinic cholinergic
neuromodulation. Nicotinic modulation increases PG cell
activity, inhibiting mitral cells more strongly and thereby
sharpening their tuning curves (solid red line). Concur-
rently, the nicotinic activation of mitral cells amplifies
their responses to odor inputs (dotted red line). (c) Behav-
ioral experiments demonstrate that animals’ discrimination
between similar odors is reduced when nicotinic receptors
are blocked and increased when cholinergic inputs are
potentiated. The ordinate depicts an index of discrimina-
tion averaged among pairs of similar odorants (Chaudhury
et al. 2009)

8 Computational Modeling of Olfactory Behavior



References

Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB,
Garcia da Silva P, Delevich K, Oyibo HK, Gupta P,
Li B, Albeanu DF (2015) An interglomerular circuit
gates glomerular output and implements gain control in
the mouse olfactory bulb. Neuron 87:193–207

Bhagavan S, Smith BH (1997) Olfactory conditioning in
the honey bee, Apis mellifera: effects of odor intensity.
Physiol Behav 61:107–117

Castillo PE, Carleton A, Vincent JD, Lledo PM
(1999) Multiple and opposing roles of cholinergic
transmission in the main olfactory bulb. J Neurosci
19:9180–9191

Chaudhury D, Escanilla O, Linster C (2009) Bulbar ace-
tylcholine enhances neural and perceptual odor dis-
crimination. J Neurosci 29:52–60

Cleland TA, Linster C (1999) Concentration tuning medi-
ated by spare receptor capacity in olfactory sensory
neurons: a theoretical study. Neural Comput
11:1673–1690

Cleland TA, Linster C (2002) How synchronization prop-
erties among second-order sensory neurons can medi-
ate stimulus salience. Behav Neurosci 116:212–221

Cleland TA, Sethupathy P (2006) Non-topographical con-
trast enhancement in the olfactory bulb. BMCNeurosci
7:7

Cleland TA, Morse A, Yue EL, Linster C (2002) Behav-
ioral models of odor similarity. Behav Neurosci
116:222–231

Cleland TA, Johnson BA, Leon M, Linster C (2007) Rela-
tional representation in the olfactory system. Proc Natl
Acad Sci U S A 104:1953–1958

Cleland TA, Chen SY, Hozer KW, Ukatu HN, Wong KJ,
Zheng F (2012) Sequential mechanisms underlying
concentration invariance in biological olfaction. Front
Neuroeng 4:21

Cleland TA, Linster C (2012) On-center/inhibitory-sur-
round decorrelation via intraglomerular inhibition in
the olfactory bulb glomerular layer. Front Integr
Neurosci 6:5. https://doi.org/10.3389/fnint.2012.00005

David F, Linster C, Cleland TA (2008) Lateral dendritic
shunt inhibition can regularize mitral cell spike pattern-
ing. J Comput Neurosci 25:25–38

de Almeida L, Idiart M, Linster C (2013) A model of
cholinergic modulation in olfactory bulb and piriform
cortex. J Neurophysiol 109:1360–1377

de Almeida L, Reiner SJ, Ennis M, Linster C (2015) Com-
putational modeling suggests distinct, location-specific
function of norepinephrine in olfactory bulb and
piriform cortex. Front Comput Neurosci 9:73

de Almeida L, Idiart M, Dean O, Devore S, Smith DM,
Linster C (2016) Internal cholinergic regulation of
learning and recall in a model of olfactory processing.
Front Cell Neurosci 10:256

Devore S, Linster C (2012) Noradrenergic and cholinergic
modulation of olfactory bulb sensory processing. Front
Behav Neurosci 6:52

Devore S, Manella LC, Linster C (2012) Blocking musca-
rinic receptors in the olfactory bulb impairs perfor-
mance on an olfactory short-term memory task. Front
Behav Neurosci 6:59

Devore S, de Almeida L, Linster C (2014) Distinct roles of
bulbar muscarinic and nicotinic receptors in olfactory
discrimination learning. J Neurosci 34:11244–11260

Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopa-
minergic modulation of olfactory bulb processing
affects odor discrimination learning in rats. Behav
Neurosci 123:828–833

Gao Y, Strowbridge BW (2009) Long-term plasticity of
excitatory inputs to granule cells in the rat olfactory
bulb. Nat Neurosci 12:731–733

Harrison TA, Scott JW (1986) Olfactory bulb responses to
odor stimulation: analysis of response pattern and
intensity relationships. J Neurophysiol 56:1571–1589

Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997)
Noradrenergic suppression of synaptic transmission
may influence cortical signal-to-noise ratio.
J Neurophysiol 77:3326–3339

Johnson BA, Leon M (2000) Modular representations of
odorants in the glomerular layer of the rat olfactory
bulb and the effects of stimulus concentration.
J Comp Neurol 422:496–509

Johnson BA, Woo CC, Hingco EE, Pham KL, Leon
M (1999) Multidimensional chemotopic responses to
n-aliphatic acid odorants in the rat olfactory bulb.
J Comp Neurol 409:529–548

Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G,
Yanagawa Y, Obata K, Okano H, Toida K, Puche AC,
Shipley MT (2010) Molecular identity of peri-
glomerular and short axon cells. J Neurosci
30:1185–1196

Li G, Cleland TA (2013) A two-layer biophysical model of
cholinergic neuromodulation in olfactory bulb.
J Neurosci 33:3037–3058

Li G, Cleland TA (2017) A coupled-oscillator model of
olfactory bulb gamma oscillations. PLoS Comput Biol
13:e1005760

Li G, Linster C, Cleland TA (2015) Functional differenti-
ation of cholinergic and noradrenergic modulation in a
biophysical model of olfactory bulb granule cells.
J Neurophysiol 114:3177–3200

Linster C, Kerszberg M, Masson C (1994) How neurons
may compute: the case of insect sexual pheromone
discrimination. J Comput Neurosci 1(3):231–238

Linster C, Cleland TA (2001) How spike synchronization
among olfactory neurons can contribute to sensory
discrimination. J Comput Neurosci 10:187–193

Linster C, Cleland TA (2002) Cholinergic modulation of
sensory representations in the olfactory bulb. Neural
Netw 15:709–717

Linster C, Cleland TA (2004) Configurational and elemen-
tal odor mixture perception can arise from local inhibi-
tion. J Comput Neurosci 16:39–47

Linster C, Cleland TA (2010) Decorrelation of odor repre-
sentations via spike timing-dependent plasticity. Front
Comput Neurosci 4:157

Computational Modeling of Olfactory Behavior 9

https://doi.org/10.3389/fnint.2012.00005


Linster C, Gervais R (1996) Investigation of the role of
interneurons and their modulation by centrifugal fibers
in a neural model of the olfactory bulb. J Comput
Neurosci 3:225–246

Linster C, Hasselmo M (1997) Modulation of inhibition in
a model of olfactory bulb reduces overlap in the neural
representation of olfactory stimuli. Behav Brain Res
84:117–127

Linster C, Johnson BA, Yue E, Morse A, Xu Z, Hingco EE,
Choi Y, Choi M, Messiha A, Leon M (2001) Perceptual
correlates of neural representations evoked by odorant
enantiomers. J Neurosci 21:9837–9843

Linster C, Maloney M, Patil M, Hasselmo ME
(2003) Enhanced cholinergic suppression of previously
strengthened synapses enables the formation of self-
organized representations in olfactory cortex.
Neurobiol Learn Mem 80:302–314

Linster C, Henry L, Kadohisa M, Wilson DA (2007) Syn-
aptic adaptation and odor-background segmentation.
Neurobiol Learn Mem 87:352–360

Linster C, Menon AV, Singh CY, Wilson DA (2009) Odor-
specific habituation arises from interaction of afferent
synaptic adaptation and intrinsic synaptic potentiation
in olfactory cortex. Learn Mem 16:452–459

Linster C, Nai Q, Ennis M (2011) Nonlinear effects of
noradrenergic modulation of olfactory bulb function
in adult rodents. J Neurophysiol 105:1432–1443

Mandairon N, Ferretti CJ, Stack CM, Rubin DB, Cleland
TA, Linster C (2006a) Cholinergic modulation in the
olfactory bulb influences spontaneous olfactory dis-
crimination in adult rats. Eur J Neurosci 24:3234–3244

Mandairon N, Stack C, Kiselycznyk C, Linster C (2006b)
Broad activation of the olfactory bulb produces long-
lasting changes in odor perception. Proc Natl Acad Sci
U S A 103:13543–13548

Mandairon N, Kermen F, Charpentier C, Sacquet J,
Linster C, Didier A (2014) Context-driven activation
of odor representations in the absence of olfactory

stimuli in the olfactory bulb and piriform cortex.
Front Behav Neurosci 8:138

Marr D (1982) Vision: a computational approach. Freeman
& Co, San Francisco

McIntyre ABR, Cleland TA (2016) Biophysical constraints
on lateral inhibition in the olfactory bulb.
J Neurophysiol 115(6):2937–2949. https://doi.org/
10.1152/jn.00671.2015

Meister M, Bonhoeffer T (2001) Tuning and topography in
an odor map on the rat olfactory bulb. J Neurosci
21:1351–1360

Meredith M (1986) Patterned response to odor in mamma-
lian olfactory bulb: the influence of intensity.
J Neurophysiol 56:572–597

Pressler RT, Inoue T, Strowbridge BW (2007) Muscarinic
receptor activation modulates granule cell excitability
and potentiates inhibition onto mitral cells in the rat
olfactory bulb. J Neurosci 27:10969–10981

Song S, Miller KD, Abbott LF (2000) Competitive
Hebbian learning through spike-timing-dependent syn-
aptic plasticity. Nat Neurosci 3:919–926

Stopfer M, Bhagavan S, Smith BH, Laurent G (1997)
Impaired odour discrimination on desynchronization
of odour-encoding neural assemblies. Nature
390:70–74

Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus
identity coding in an olfactory system. Neuron
39:991–1004

Strauch M, Ditzen M, Galizia CG (2012) Keeping their
distance? Odor response patterns along the concentra-
tion range. Front Syst Neurosci 6:71

Wei CJ, Linster C, Cleland TA (2006) Dopamine D(2)
receptor activation modulates perceived odor intensity.
Behav Neurosci 120(2):393–400

Wellis DP, Scott JW, Harrison TA (1989) Discrimination
among odorants by single neurons of the rat olfactory
bulb. J Neurophysiol 61:1161–1177

10 Computational Modeling of Olfactory Behavior

https://doi.org/10.1152/jn.00671.2015
https://doi.org/10.1152/jn.00671.2015

	607-2: 
	Computational Modeling of Olfactory Behavior
	Definition
	Detailed Description
	Example 1: Odor Concentration and Spike Timing in the Insect Antennal Lobe
	Example 2: The Problem of Concentration Invariance in the Olfactory Bulb
	Example 3: Effects of Nicotinic Receptor Activation on Odor Discrimination - Behavioral Experiments and Biophysical Modeling

	Conclusion
	References


