
ORIGINAL RESEARCH
published: 27 June 2019

doi: 10.3389/fnins.2019.00656

Frontiers in Neuroscience | www.frontiersin.org 1 June 2019 | Volume 13 | Article 656

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Thomas Nowotny,

University of Sussex, United Kingdom

*Correspondence:

Ayon Borthakur

ab2535@cornell.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 02 February 2019

Accepted: 07 June 2019

Published: 27 June 2019

Citation:

Borthakur A and Cleland TA (2019) A

Spike Time-Dependent Online

Learning Algorithm Derived From

Biological Olfaction.

Front. Neurosci. 13:656.

doi: 10.3389/fnins.2019.00656

A Spike Time-Dependent Online
Learning Algorithm Derived From
Biological Olfaction

Ayon Borthakur 1* and Thomas A. Cleland 2

1Computational Physiology Laboratory, Field of Computational Biology, Cornell University, Ithaca, NY, United States,
2Computational Physiology Laboratory, Department of Psychology, Cornell University, Ithaca, NY, United States

We have developed a spiking neural network (SNN) algorithm for signal restoration

and identification based on principles extracted from the mammalian olfactory system

and broadly applicable to input from arbitrary sensor arrays. For interpretability and

development purposes, we here examine the properties of its initial feedforward

projection. Like the full algorithm, this feedforward component is fully spike timing-based,

and utilizes online learning based on local synaptic rules such as spike timing-dependent

plasticity (STDP). Using an intermediate metric to assess the properties of this initial

projection, the feedforward network exhibits high classification performance after

few-shot learning without catastrophic forgetting, and includes a none of the above

outcome to reflect classifier confidence. We demonstrate online learning performance

using a publicly available machine olfaction dataset with challenges including relatively

small training sets, variable stimulus concentrations, and 3 years of sensor drift.
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INTRODUCTION

Convolutional networks have enabled tremendous progress in image recognition. However,
analogous problems in high-dimensional modalities that lack the two-dimensional internal
structure of visual images are not well-addressed by these networks, and the development of
brain-mimetic network-based signal identification strategies in such modalities has lagged. This
is unfortunate, as there are innumerable applications for such classifiers, including medical
screening, genomics, and machine olfaction. Among these, machine olfaction methods have been
directly inspired by the mammalian and insect olfactory systems—highly structured and well-
studied biological networks that learn rapidly and non-iteratively, utilize local learning rules,
resist catastrophic forgetting, can identify and learn new classes of odors (i.e., that do not map
to existing representations), and can robustly identify signals of interest in the presence of strong
interference. We studied the mammalian olfactory system in order to extract computational
principles and algorithms that could underlie its unmatched ability to identify and classify
genuinely high-dimensional signals under a variety of challenging conditions.

Most current research effort in machine olfaction is devoted to sensor development, including
technologies such as multi-chamber metal oxide semiconductor (MOS) sensors (Gonzalez et al.,
2011), high-density polymer sensors (Beccherelli et al., 2010), molecularly imprinted MOS and
polymer sensors (Shi et al., 1999; Iskierko et al., 2016; Zhang et al., 2017), and surface acoustic
wave sensors (Länge et al., 2008). In an effort to mimic properties of the biological system, there
even have been efforts to develop sensors based on G protein-coupled receptor proteins bound to
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carbon nanotube transistors (Liu et al., 2006). In contrast,
there has been relatively little effort spent mining the post-
sensory networks of the olfactory system for clues to its
unmatched performance, despite a broad understanding that
biological odorant receptors are neither particularly specific nor
particularly sensitive to odor stimuli. Rather, the power of the
biological olfactory system derives from the concerted effects
of the large numbers and diversity of its sensors, and by its
post-sensory signal processing in the olfactory bulb and related
cortices. These core principles inform recent developments
in neuromorphic olfaction (Persaud et al., 2013; Schmuker
et al., 2015), and have been highlighted in contemporary
artificial systems work based on the similarly-structured olfactory
system of insects (Schmuker et al., 2014; Mehta et al., 2017;
Diamond et al., 2019).

We here present a spiking neural network (SNN)-based online
learning algorithm, based on principles and motifs derived from
the mammalian olfactory system, that can accurately classify
noisy high-dimensional signals into categories that have been
dynamically defined by few-shot learning. In order to better
interpret the basis for the algorithm’s capabilities, the present
work focuses entirely on the properties of the first feedforward
projection, omitting the spike timing-based feedback loop that
forms the core network of the full OB model (Imam and Cleland,
2019). Glomerular-layer processing is represented here by two
preprocessing algorithms, whereas plasticity for rapid learning
is embedded in subsequent processing by the external plexiform
layer (EPL) network. Information in the EPL network is mediated
by patterns of spike timing with respect to a common clock
corresponding to the biological gamma rhythm, and learning
is based on localized spike timing-based synaptic plasticity
rules. The algorithm is implemented in PyTorch for GPU
computation, but designed for later implementation on state-
of-the-art neuromorphic computing hardware (Davies et al.,
2018); the initial version of the complete attractor model has
been implemented on Intel Loihi (Imam and Cleland, 2019). We
here demonstrate the interim performance of the feedforward
algorithm using a well-established machine olfaction dataset
with distinct challenges including multiple odorant classes,
variable stimulus concentrations, physically degraded sensors,
and substantial sensor drift over time.

CORE PRINCIPLES

The network is based on the architecture of the mammalian
olfactory bulb (reviewed in Cleland, 2014; Nagayama et al.,
2014). Primary olfactory sensory neurons (OSNs) express a single
odorant receptor type from a family of hundreds (depending
on animal species). The axons of OSNs that express the same
receptor type converge to a common location on the surface
of the olfactory bulb (OB), forming a mass of neuropil called
a glomerulus. Each glomerulus thus is associated with exactly
one receptor type, and serves as the basis for an OB column.
The profile of glomerular activation levels across the hundreds
of receptor types (∼400 in humans, ∼1,200 in rats and mice)
that are activated by a given odorant constitutes a high-
dimensional vector of sensory input (Zaidi et al., 2013). Within
this first (glomerular) layer of the OB, a number of preprocessing

computations also are performed, including a high-dimensional
form of contrast enhancement (Cleland and Sethupathy, 2006)
and an intricate set of computations mediating a type of global
feedback normalization that enables concentration tolerance
(Cleland et al., 2012). The cellular and synaptic properties of
this layer also begin the process of transforming stationary
input vectors into spike timing-based representations discretized
by 30–80Hz gamma oscillations (Kashiwadani et al., 1999; Li
and Cleland, 2017). The EPL, which constitutes the deeper
computational layer of the OB, comprises a matrix of reciprocal
interactions between principal neurons activated by sensory
input (mitral cells; MCs) and inhibitory interneurons (granule
cells; GCs). Computations in this layer depend on fine-timescale
spike timing (Lepousez and Lledo, 2013) and odor learning
(Lepousez et al., 2014; Mandairon et al., 2018), and modify the
information exported from the OB to its follower cortices.

Chemical sensing in machine olfaction is similarly based
upon combinatorial coding (Persaud andDodd, 1982); specificity
is achieved by combining the responses of many poorly-
selective sensors. In the present algorithm, networks were
defined with a number of columns such that each column
received input from one type of sensor in the connected input
array. Columns each comprised one external tufted (ET) cell
and one periglomerular (PG) cell to mediate glomerular-layer
preprocessing, and one MC and a variable number of GCs to
mediate EPL odorant learning and classification (Figure 1; see
section Online Learning). Sensory input was preprocessed by
the ET and PG cells of the glomerular layer (for concentration
tolerance), and then delivered as excitation to the array of
MCs, which generated action potentials. Each MC synaptically
excited a number of randomly determined GCs drawn from
across the entire network, whereas activated GCs synaptically
inhibited the MC in their home column. Importantly, for present
purposes, these inhibitory feedback weights were all reduced to
zero to disable the feedback loop and EPL attractor dynamics,
enabling study of the initial feedforward transformation based
on excitatory synaptic plasticity alone. During learning, the
excitatory synapses followed a STDP rule that systematically
altered their weights, thereby modifying the complex receptive
fields of recipient GCs in the service of odor learning. In the
present study, in lieu of the modified spike timing of the MC
ensemble that characterizes the output of the full model (Imam
and Cleland, 2019), the binary vector describing GC ensemble
activity in response to odor stimulation (0: non-spiking GC;
1: spiking GC) served as the processed data for classification.
Because we here report the capacities of the initial feedforward
projection of preprocessed data onto the GC interneuron array
within the EPL—an initial transformation that sets the stage for
ongoing dynamics not discussed herein—we refer to our present
method as the EPLff network algorithm.

MATERIALS AND METHODS

Data Preprocessing
Sensor Scaling
We defined a set of preprocessing algorithms, any or all of
which could be applied to a given data set to prepare it for
efficient analysis by the core algorithm. The first of these,
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FIGURE 1 | Schematic model of EPLff network circuitry (three columns depicted). Sensor-scaled input data are presented in parallel to excitatory external tufted (ET)

cells and inhibitory periglomerular (PG) cells in the glomerular layer. This glomerular-layer circuit performs an unsupervised concentration tolerance preprocessor step

based on the graded inhibition of ET cells by PG cells. The concentration-normalized ET cell activity then is presented as input to their co-columnar mitral cells (MCs).

In the external plexiform layer (EPL), comprising MC interactions with inhibitory granule cells (GCs), levels of sensory input are encoded in MCs as a spike time

precedence code across the MC population. MCs project randomly onto GCs with a connection probability of 0.4. These synaptic connections are plastic, following a

standard STDP rule that enables GCs to learn high-order receptive fields (Linster and Cleland, 2010). The GC population consequently learns to recognize specific

odorants by measuring the similarity of high dimensional GC activity vectors with the Hamming distance metric.

sensor scaling, is applied to compensate for heterogeneity in the
scales of different sensors—for example, an array comprising
a combination of 1.8V and 5V sensors. One simple solution
is to scale the responses of each sensor by the maximum
response of that sensor. Let x1, x2, x3, ..., xn be the responses of
n sensors to a given odor and s1, s2, s3, ..., sn be the maximum
response values of those sensors. Then, x1s1 ,

x2
s2
, x3s3 , ...,

xn
sn

represent
the sensor-scaled responses. The maximum sensor response
vector S could be predetermined (as in sensor voltages), or
estimated using a model validation set. Here, we defined S
using the model validation set (10% of Batch 1 data; see
section Dataset) and utilized the same value of S for scaling all
subsequent learning and inference data (see section Sensor Drift).
This preprocessing algorithm becomes particularly useful when
analyzing data from arbitrary or uncharacterized sensors, or from
arrays of sensors that have degraded and drifted non-uniformly
over time.

Unsupervised Concentration Tolerance
Concentration tolerance is a critical feature of mammalian as well
as insect olfaction (Cleland and Sethupathy, 2006; Cleland et al.,
2012; Serrano et al., 2013). Changes in odorant concentration
evoke non-linear effects in receptor activation patterns that are
substantial in magnitude and often indistinguishable from those
based on changes in odor quality. Distinguishing concentration
differences from genuine quality differences appears to rely upon
multiple coordinated mechanisms within olfactory bulb circuitry
(Cleland et al., 2012), but the most important of these is a
global inhibitory feedback mechanism instantiated in the deep

glomerular layer (Cleland et al., 2007; Banerjee et al., 2015).
The consequence of this circuit is that MC spike rates are not
strongly or uniformly affected by concentration changes, and
the overall activation of the olfactory bulb network remains
relatively stable. We implemented this concentration tolerance
mechanism as the graded inhibition of external tufted cells (ET)
by periglomerular cell (PG) interneurons in the OB glomerular
layer (Figure 1)—a mechanism based upon recent experimental
findings in which ET cells serve as the primary gates of MC
activation (Gire et al., 2012; Banerjee et al., 2015)—and tested
its importance empirically on machine olfaction data sets. This
concentration tolerance mechanism facilitates recognition of
odor stimuli even when they are encountered at concentrations
on which the network has not been trained; moreover, once
an odor has been identified, its concentration can be estimated
based on the level of feedback that the network delivers in
response to its presentation. This preprocessing step requires
no information about input data labels, and greatly facilitates
few-shot learning.

Input from each sensor was delivered directly to PG and

ET interneurons associated with the column corresponding to
that sensor, and the resulting PG cell activity was delivered

via graded synaptic inhibition onto all ET cells within all
columns in the network. ET cells in turn then synaptically
excited their corresponding, cocolumnar MCs (Figure 1). The
approximate outcome of this preprocessor algorithm is as
follows: given that xET1 , xET2 , xET3 , ..., xETn denote the responses
of ET cells to odor inputs (prior to their inhibition by PG
cells), and x

pg
1 , x

pg
2 , x

pg
3 , ..., x

pg
n denote the analogous responses of
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PG interneurons to these same inputs, the resulting input to
MC somata from ET cells following their PG-mediated lateral
inhibition will be

xET1
∑

xpg
,

xET2
∑

xpg
,

xET3
∑

xpg
,...,

xETn
∑

xpg
(1)

A version of this algorithm has been implemented using
spiking networks on IBM TrueNorth neuromorphic hardware
(Imam et al., 2012).

Core Algorithm
Cellular and Synaptic Models
We modeled the MCs and GCs as leaky integrate-and-fire
neurons with an update period of 0.01ms. The evolution of
the membrane potential v of MCs and GCs over time was
described as

τ
dv

dt
= −v+ IR (2)

where τ = rmcm was the membrane time constant and rm and
cm denote themembrane resistance and capacitance, respectively.
For MCs, the input current I corresponded to sensory input
received from ET cells (after preprocessing by the ET and
PG neurons of the glomerular layer; Figure 1), whereas for
GCs, I constituted the total synaptic input from convergent
presynaptic MCs. In GCs, the parameter R was set to equal rm,
whereas in MCs it was set to rm/rshunt , where rshunt was the
oscillatory shunting inhibition of the gamma clock (described
below). When v ≥ vth, where vth denotes the spike threshold,
a spike event was generated and v was reset to 0. The total
excitatory current to GCs was modeled as

I = gw(En − v) (3)

where En was the Nernst potential of the excitatory current
(+70mv), v was the GC membrane potential, and gw =
n
∑

i=1
wigmax

τ1τ2
τ1−τ2

(e
−(t−ti)

τ1 − e
−(t−ti)

τ2 ) describes the open probability

of the AMPA-like synaptic conductances. Here, ti denotes
presynaptic spike timing, wi denotes the synaptic weight, and
gmax is a scaling factor.

The parameters cm, rm, rshunt ,En, gmax, τ1, and τ2 were
determined only once each for MCs and GCs using a synthetic
data set (Borthakur and Cleland, 2017) and remained unchanged
during the application of the algorithm to real datasets. The
value of wiat each synapse also was set to a fixed starting value
based on synthetic data, but was dynamically updated according
to the STDP learning rule. The spiking thresholds vth of MCs and
GCs were determined by assessing algorithm performance on
the training and validation sets. Because we observed that using
heterogeneous values of vth across GCs improved performance,
the values of vth were randomly assigned across GCs from a
uniform distribution.

Gamma Clock and Spike Precedence Code
Oscillations in the local field potential are observed throughout
the brain, arising from the synchronization of activity in neuronal

ensembles. In the OB, gamma-band (30–80Hz) oscillations are
associated with the coordinated periodic inhibition of MCs by
GCs (Li and Cleland, 2017; Peace et al., 2017) that constrains
MC spike timing (Kashiwadani et al., 1999), thereby serving as a
common clock. For this work, we modeled a single cycle gamma
oscillation as a sinusoidal shunting inhibition rshunt delivered
onto all MCs,

rshunt = −3.8∗ cos(
2π∗f ∗t

1000
)+ 5 (4)

where f is the oscillation frequency (40Hz) and t is the simulation
time. We used a spike precedence coding scheme for MCs
(Panzeri et al., 2010) where earlier MC spike phases correspond
to stronger sensor input and are correspondingly more effective
at growing and maintaining spike timing-dependent plastic
synapses (Linster and Cleland, 2010). In the full model, the
gamma clock serves as the iterative basis for the attractor; for
present purposes in the EPLff context it served only to structure
the spike times of active MCs converging onto particular
GCs (precedence coding), and thereby to govern the changes
in excitatory synaptic weights according to the STDP rule
(see below).

Connection Topology
MC lateral dendrites support action potential propagation to GCs
across the entire extent of the OB (Xiong and Chen, 2002; Peace
et al., 2017), whereas inhibition of MCs by GCs is more localized.
Excitatory MC-GC synapses were initialized with a uniformly
distributed random probability cp of connection and a uniform
weightw0; synaptic weights were modified thereafter by learning.
The initial connection probability cp was determined using a
synthetic data set (Borthakur and Cleland, 2017), and was set
to cp = 0.4 in the present simulations. For present purposes,
as noted above, GC-MC inhibitory weights were set to zero to
disable attractor dynamics.

Spike Timing-Dependent Plasticity Rule
We used a modified spike timing-dependent plasticity rule
(STDP; Song et al., 2000; Dan and Poo, 2004) to regulate MC-GC
excitatory synaptic weight modification. Briefly, synaptic weight
changes were initiated by GC spikes and depended exponentially
upon the spike timing difference between the postsynaptic GC
spike and the presynaptic MC spike. When a presynaptic MC
spike preceded its postsynaptic GC spike within the same gamma
cycle, w for that synapse was increased; in contrast, when MC
spikes followed GC spikes, or when a GC spike occurred without
a presynaptic MC spike, w was decremented. Synaptic weights
were limited by a maximum weight wmax. The pairing of STDP
with MC spike precedence coding discretized by the gamma
clock generated a k winners take all rule, in which the value
of k depended substantially on the GC spike threshold vth
and the maximum excitatory synaptic weight wmax. Under this
rule, activated GCs were transformed from non-specialized cells
receiving weak inputs from a broad and random distribution of
MCs into specialized, fully differentiated neurons that responded
only to coordinated activation across a specific ensemble of k
MCs. Under all training conditions, for present purposes, we set
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a high learning rate such that, after one cycle of learning, each of
the synapses could have one of only three values: w0, wmax , or 0.

The STDP parameters were similar to our previous work
using a synthetic data set (Borthakur and Cleland, 2017);
among these, only the maximum synaptic weight wmax was
tuned based on validation set performance. For this feedforward
implementation, online learning without the requirement of
storing training data yielded its best validation set performance
when wmax = w0, such that learning was limited to long-term
synaptic depression (Borthakur and Cleland, 2017).

Classification
For the classification of test odorants in this reduced feedforward
EPLff implementation, we calculated the Hamming distance
between the binary vectors of GC odorant representations.
Specifically, for every input, GCs generated a binary vector based
upon whether the GC spiked (1) or did not spike (0).Wematched
the similarity of test set binary vectors with the training set
vector(s) using the Hamming distance and classified the test
sample based upon the label of the closest training sample.
Alternatively, an overlap metric between GC activation patterns
also was calculated (Equation 6 from Linster and Cleland, 2010);
results based on this method were reliably identical to those
of the Hamming distance and hence were omitted from this
report. Classification was set to none of the above if the Hamming
distance of the GC binary vectors was >0.5, or if the overlap
metric was <0.5.

Dataset
We tested our algorithm on the publicly available UCSD gas
sensor drift dataset (Vergara et al., 2012; Rodriguez-Lujan et al.,
2014), slightly reorganized to better demonstrate online learning.
The original dataset contains 13,910 measurements from an
array of 16 polymer chemosensors exposed to six gas-phase
odorants spanning a wide range of concentrations (10–1,000
ppmv) and distributed across 10 batches that were sampled
over a period of 3 years to emphasize the challenge of sensor
drift over time (Table 1). Owing to drift, the sensors’ output
statistics change drastically over the course of the 10 batches;
between this property, the six different gas types, and the
wide range of concentrations delivered, this dataset is well-
suited to test the capabilities of the present algorithm without
exceeding the learning capacity of its feedforward architecture
(Figure 1). For the online learning scenario, we sorted each batch
of data according to the odorant trained, but did not organize
the data according to concentration. Hence, each training set
comprised 1–10 odorant stimuli of the same type but at randomly
selected concentrations. Test sets always included all six different
odorants, again at randomly selected concentrations. For sensor
scaling and the fine-tuning of the algorithm, we used 10% of the
Batch 1 data as a validation set. The six odorants in the dataset
are, in the order of training used herein: ammonia, acetaldehyde,
acetone, ethylene, ethanol, and toluene. Batches 3–5 included
only five different odorant stimuli, omitting toluene.

Eight features per chemosensor were recorded in the UCSD
dataset, yielding a 128-dimensional feature vector. However, in
contrast to previous efforts (Liu et al., 2015; Zhang and Zhang,

2015; Yan et al., 2017; Ma et al., 2018), we chose to use only
one feature per sensor in our analysis (the steady state response
level), for a total of 16 features. We imposed this restriction to
challenge our algorithm, and because generating features from
raw data requires additional processing, energy and time, all of
which can impair the effectiveness of field-deployable hardware
(Yin et al., 2018). Importantly, however, the sensor scaling and
concentration tolerance preprocessors described above (section
Data Preprocessing) would enable the EPLff network to utilize
the full 128-dimensional dataset without specific adaptations
other than expanding the number of columns accordingly.

RESULTS

Data Preprocessing
All sensory input data were preprocessed before being presented
to the network. First, sensor scaling was applied to weight
the 16 sensors equally in subsequent computations. The mean
raw responses of the 16 sensors differed widely, with some
sensors exhibiting an order of magnitude greater variance than
others across the 10 odorants tested (Figure 2A). Sensor scaling
(Figure 2B) mitigated this effect by scaling each sensor’s gain
such that the dynamic ranges of all sensors across the test
battery were effectively equal. This process enabled each sensor
to contribute a comparable amount of information to subsequent
computations (up to a limit imposed by each sensor’s signal to
noise ratio), and improved network performance by maintaining
consistent mean activity levels across test odorants.

Since each odorant was presented at a wide range of randomly
selected concentrations, the response of the sensor array to a
given odorant varied widely across presentations (most clearly
observable in Figure 2B). Application of the unsupervised
concentration tolerance preprocessor sharply and selectively
reduced the concentration-specific variance among responses
to presented odorants (Figure 2C). These preprocessed odorant
signatures then were presented to the plastic EPLff network
for training or classification. Notably, this preprocessor step
greatly facilitated cross-concentration odorant recognition, even
enabling the accurate classification of samples presented at
concentrations that were not included in the training set. This
was particularly important for one- and few-shot learning, in
which the network was trained on just one or a few exemplars
(respectively), at unknown concentration(s), such that most of
the odorants in the test set were presented at concentrations on
which the network had never been trained.

The sensor scaling preprocessor (retaining the scaling factors
determined from the 10% validation set of Batch 1), combined
with the normalization effects of the subsequent concentration
tolerance preprocessor, had the additional benefit of restoring
the dynamic range of degraded sensors in order to better match
classifier network parameters. Because of this, the network
did not need to be reparameterized to effectively analyze the
responses of the degraded sensors in the later batches of
this dataset. Compared to the raw sensor output of Batch 1
(Figure 2A; collected from new sensors), the raw sensor output
of Batch 7 (Figure 2D; collected after 21 months of sensor
deterioration) was reduced to roughly a third of its original range.
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TABLE 1 | Properties of the UCSD gas sensor drift dataset.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10

Months 1–2 3–10 11–13 14–15 16 17–20 21 22–23 24–30 36

#Samples 445 1,244 1,586 161 197 2,300 3,613 294 470 3,600

Months denotes the age of the sensor array during the sampling of the corresponding dataset. #Samples denotes the number of samples provided by the dataset in that particular batch.

FIGURE 2 | Sensor drift and the application of the sensor scaling and concentration tolerance preprocessors. (A) Raw sensory data from the Batch 1 training set. The

abscissa denotes the 16 different sensors of the array; the ordinate denotes the magnitude of their responses to specific odorants. The six different colors denote the

six odorants of the dataset battery (ammonia, purple; acetaldehyde, blue; acetone, aqua; ethylene, green; ethanol, orange; and toluene, red). Note that each odorant

is presented at many different concentrations (Vergara et al., 2012). (B) Sensory input from the Batch 1 data shown in (A) after preprocessing for sensor scaling. The

absolute range of output values is now rendered consistent across all of the sensors in the array. (C) Sensory input from the same Batch 1 data after subsequent

preprocessing for concentration tolerance by glomerular layer circuitry (Figure 1, ET and PG). The sensory signatures of each of the six odors are now more internally

consistent, with less variance owing to the concentration differences inherent in the original data (D–F). As (A–C) but with Batch 7 training data. These data were

taken from the same set of sensors as depicted in (A–C), but after 21 months of operational degradation, including intermittent periods of use and disuse (Table 1).

Sensor scaling (Figure 2E) mitigated this effect by magnifying
sensor responses into the dynamic range expected by the
network. Subsequent preprocessing for concentration tolerance
effectively reduced concentration-specific variance, revealing a
set of odorant profiles (Figure 2F) that, while qualitatively
dissimilar to their profiles based on the same sensors 21 months
prior (Figure 2C), appear only modestly degraded in terms of
their distinctiveness from one another.

For many machine olfaction applications, it is useful
to estimate the concentrations of gases in the vicinity of
the sensors. We sought to use the information extracted

from the concentration tolerance preprocessor to estimate
the concentrations of test samples after classification. The
concentration estimation curve was a function of both odorant
identity and the total sensor response profile. Using the sum
of the 16 sensor responses (S), we fitted an odorant-specific
quadratic curve for an implicit model of response profiles across
concentrations C :C = ax2 + b, where the parameters a and
b were determined from the training set. Figure 3 illustrates
total sensor responses across concentrations compared to this
theoretical prediction for all six odorant gases in Batches 1 and
7. The mean absolute error (MAE) of the prediction (in ppmv)
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FIGURE 3 | Concentration response function predicted by the algorithm (curves) compared with measured sensor responses across multiple concentrations (stars).

(A) Batch 1 data with five-shot training. (B) Batch 7 data with five-shot training. (C) Batch 1 data with 10-shot training. (D) Batch 7 data with 10-shot training. The

colors denoting particular odorants are the same as in Figure 2.

TABLE 2 | Concentration estimation performance on test sets of all batches of UCSD gas sensor drift dataset for 5- and 10-shot learning (see Figure 3).

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Mean error

5 shot 35.14 51.39 32.00 44.73 66.02 37.01 76.60 17.89 0.34 71.06 43.22

10 shot 23.35 33.60 28.97 35.75 64.71 25.23 58.18 19.66 0.84 52.61 34.29

Concentrations were estimated using the predicted labels and raw sensor input. Errors represent experimental deviation from the predicted quadratic concentration curves and are in

units of ppmv.

was estimated as

∑

n

∣

∣Cpred − Cactual

∣

∣

n
(5)

where n denotes the total number of samples. For the five-shot
training of Batch 1 (i.e., five random samples drawn from Batch 1
for each odorant), the MAE was 35.14 units (Table 2). This error
was reduced to 23.35 for 10-shot learning (Table 2). Similarly,
the MAE for Batch 7 decreased from 76.60 (five-shot) to 58.18
(10-shot). To the best of our knowledge, this is the first parallel
network architecture to provide an estimate of concentration
along with concentration tolerance.

Online Learning
Unlike biological odor learning, artificial neural networks
optimized for a certain task tend to suffer from catastrophic
forgetting, and the pursuit of online learning capabilities in deep
networks is a subject of active study (McCloskey and Cohen,
1989; Kemker and Kanan, 2017; Kirkpatrick et al., 2017; Velez
and Clune, 2017; Zenke et al., 2017; Serrà et al., 2018). In contrast,
the EPLff learning network described herein naturally resists
catastrophic forgetting, exhibiting powerful online learning using
a fast spike timing-based coding metric. Moreover, we include
a none of the above outcome which permits classification only
above a threshold level of confidence (Huerta and Nowotny,
2009). Hence, after being trained on one odorant, the network
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could identify a test sample as either that odorant or none of
the above. After subsequently training the network on a second
odorant, it could classify a test sample as either the first trained
odorant, the second trained odorant, or none of the above. This
online learning capacity enables ad hoc training of the network,
with intermittent testing if desired, with no need to train on or
even establish the full list of classifiable odorants in advance.
It also facilitates training under missing data conditions (e.g.,
batches 3–5 contain samples from only five odorants, unlike the
other batches which include six odorants), and could be utilized
to trigger new learning in an unsupervised exploration context.
Finally, once learned, the training set data need not be stored.

To analyze the 16-sensor UCSD dataset, we constructed a
16-column spiking network with 4800 GC interneurons and a
uniformly random MC-GC connection probability cp = 0.4.
This number of GCs was selected because it was the smallest
network that achieved asymptotic performance on the validation
dataset (Batch 1, one-shot learning; Table 3). We then trained
this network on ammonia using 10 different few-shot training
schemes: one-shot, two-shot, three-shot, up through 10-shot
in order to measure the utility of additional training. Test
data (across all trained odorants and all concentrations in
the dataset) were classified with 100.0% accuracy in all cases
(Figure 4A; average of three runs). We subsequently trained
each of these trained networks on acetaldehyde, using the same
number of training trials in each case. After one-shot learning
of acetaldehyde, the network classified all trained odorants with
99.61± 0.28% accuracy (average of three runs). After subsequent
one-shot learning of acetone, classification performance was
95.65± 0.19%; after ethylene, 96.06± 0.17%; after ethanol, 90.94
± 0.0%, and finally, after one-shot training on the sixth and
final odorant, toluene, test set classification performance across
all odorants was 90.27± 0.12%. Multiple-shot learning generally
produced correspondingly higher classification performance as
the training regimen expanded (Figure 4A). Classification using
an overlap metric (Linster and Cleland, 2010) rather than the
Hamming distance yielded almost identical results (not shown).
Critically, classification performance did not catastrophically
decline as additional odorants were learned in series (Figure 4,
purple to red (orange) traces in order), particularly when
higher-quality sensors were used (Figures 4A–E) or when larger
multiple-shot training sets were employed (Figure 4, panel
abscissas). These results illustrate that the EPLff network, even
in the absence of the full model’s recurrent component, exhibits
true online learning.

The availability of data in the UCSD dataset from over
3 years of sensor deterioration enabled the testing of this
online learning algorithm with both fresh and degraded sensor
arrays. Figures 4B–J presents classification results from the
same procedures described above but using progressively older
and more degraded sensors (Batches 2–10; Table 1; Vergara
et al., 2012). Classification performance declined overall as the
sensors deteriorated in later batches (Figures 4F–J), but could
be substantially rescued by expanding the training regimen from
one-shot to few-shot learning. Overall, multiple-shot training
reliably improved classification performance, though the residual
variance across different training regimes suggests that the

TABLE 3 | Effect of increased numbers of GCs in the network (GC vector length)

on EPLff classification accuracy by the Hamming distance criterion, based on

one-shot learning using the Batch 1 validation set.

#GC 1 class 2 classes 3 classes 4 classes 5 classes 6 classes

trained trained trained trained trained trained

160 100.0 100.0 95.65 96.15 85.71 84.44

1,600 100.0 100.0 95.65 96.15 85.71 86.67

4,800 100.0 100.0 95.65 96.15 85.71 88.89

9,600 100.0 100.0 95.65 96.15 85.71 88.89

14,400 100.0 100.0 95.65 96.15 85.71 88.89

19,200 100.0 100.0 95.65 96.15 85.71 88.89

Connection probabilities and initial synaptic weights were consistent across

all simulations.

random selection of better or poorer class exemplars for training
(particularly noting the uncontrolled variable of concentration)
exerted a measurable effect on performance (Figure 4; Table 4).

Batch 10 of the UCSD dataset poses a relatively challenging
classification problem. To produce it, the sensors were
intentionally degraded and contaminated by turning off
sensor heating for 5 months following the production of Batch
9 data (Vergara et al., 2012). Prior work with this dataset has
achieved up to 73.28% classification performance on Batch
10, without online learning and using a highly introspective
approach tailored for this specific dataset (Yan et al., 2017). In
contrast, 10-shot learning on Batch 10 using the present EPLff
algorithm achieved 85.43% classification accuracy.

To compare the EPLff network’s resistance to catastrophic
forgetting against an existing standard method, we built a 16-
input multi-layer perceptron (MLP) comprising 16 input units
for raw sensor input (ReLu activation), 4,800 hidden units (ReLu
activation), and six output units for odorant classification. The
MLP was trained using the Adam optimizer (Kingma and Ba,
2014) with a constant learning rate of 0.001. Since there was no
straightforward way of implementing none of the above in an
MLP, the MLP was only trained using two or more odorants
(Figure 5). After initial, interspersed training on two odorants
from Batch 1, the MLP classified test odorants at high accuracy
(99.41 ± 0.0%; average of three runs; Figure 5A). However,
its classification accuracy dropped sharply after the subsequent,
sequential learning of odorant 3 (30.61 ± 0.0% accuracy),
odorant 4 (16.24 ± 9.29%), odorant 5 (18.13 ± 0.0%), and
odorant 6 (15.99 ± 0.0%) (Figure 5). Catastrophic forgetting is
a well-known limitation of MLPs, and is presented here simply to
quantify the contrast in online learning performance between the
EPLff implementation and a standard network of similar scale.

Online Reset Learning for Mitigating
Sensor Drift
One of the most challenging problems of machine olfaction
is sensor drift, in which the sensitivity and selectivity profiles
of chemosensors gradually change over weeks to months of
use or disuse. Efforts to compensate for this drift have taken
many forms, from simply replacing sensors to designing highly
introspective or specific corrective algorithms. For example,
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FIGURE 4 | EPLff algorithm performance on UCSD gas sensor drift dataset. (A) Classification performance during online training and testing of Batch 1 data. Plotted

values depict the average classification performance for all test samples of the trained classes. Ammonia was trained first; the purple plot (One trained class) denotes

the classification accuracy of ammonia test samples as either ammonia or none of the above. Acetaldehyde was trained second; the blue plot (Two trained classes)

denotes the classification accuracy of trained-class samples as either ammonia, acetaldehyde, or none of the above. Online training proceeded with acetone (aqua),

ethylene (green), ethanol (orange), and toluene (red) in that order, with the final plot (red or orange) finally denoting the average classification accuracy of all samples

into one of the six (or five) odorant classes or, potentially, as none of the above. Classification performance degraded slightly as the number of trained odorant

representations in the network increased, but improved as the number of learning shots increased (B). As (A), but after training and testing with Batch 2 data (C–J).

As (A,B), but after training and testing with Batch 3–10 data, in corresponding order. The colors denoting particular odorants are consistent with Figures 2, 3.

one approach requires the non-random, algorithmically guided
selection of relevant samples across batches and/or the utilization
of test data as unlabeled data for additional training (Zhang and
Zhang, 2015; Yan et al., 2017; Ma et al., 2018). Despite some
partial successes in these approaches, the real-world challenge
of sensor drift is a fundamentally ill-posed problem, in which
the rapidity and nature of functional drift is highly dependent
on the idiosyncratic chemistry of individual sensors and specific
sensor-analyte pairs.

We argue that the most practical solution to this challenge
is to retrain the network as needed to maintain performance,
leveraging its rapid, online learning capacity. Specifically, MC-
GC synaptic weights are simply reset to their untrained values
and the network then is rapidly retrained using the new
(degraded) sensor response profiles (reset learning). Retraining
is not a new approach, of course, but overtly choosing a
commitment to heuristic retraining as the primary method for
countering sensor drift is important, as it determines additional
criteria for real-world device functionality that candidate
solutions must address, such as the need for rapid, ideally online

retraining in the field and potentially a tolerance for lower-fidelity
training sets. Specifically, retraining a traditional classification
network may require:

1. Prior knowledge of the number of possible odor classes to
be identified,

2. A sufficiently large and representative training set
incorporating each of these classes,

3. The retuning of network hyperparameters to match the
altered characteristics of the degraded sensors, requiring an
indeterminate number of training iterations.

The EPL network is not constrained by the above requirements.
As demonstrated above, it can be rapidly retrained using
small samples of whatever training sets are available and
then be updated thereafter—including the subsequent
introduction of new classes. The storage of training data
for retraining purposes is unnecessary as the network does
not suffer from catastrophic forgetting. Finally, the present
network does not require hyperparameter retuning. Here,
only the MC-GC weights were updated during retraining
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TABLE 4 | Mean EPLff classification accuracies across all test odorants on the UCSD drift data set by the Hamming distance criterion.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average

1 shot 95.42 83.62 92.48 69.43 88.89 80.97 79.37 87.59 93.04 74.11 84.49

2 shot 95.15 90.38 93.97 93.68 89.35 91.35 80.98 90.41 94.68 77.36 89.73

3 shot 96.28 89.91 93.60 93.02 95.78 87.30 82.98 93.52 96.51 85.72 91.46

4 shot 96.62 90.29 97.02 92.64 96.87 91.25 83.89 93.26 97.02 82.58 92.14

5 shot 97.99 93.47 95.54 86.94 96.40 92.42 87.35 92.89 99.05 87.19 92.92

6 shot 96.00 85.44 94.70 99.69 93.01 92.22 87.77 92.93 98.73 87.36 92.78

7 shot 98.80 94.22 96.54 96.66 97.03 93.47 87.79 95.11 98.30 88.39 94.63

8 shot 98.59 96.45 95.79 95.48 95.64 92.78 89.43 96.16 98.81 90.34 94.95

9 shot 98.39 96.92 94.11 95.35 98.06 90.37 88.92 94.84 98.82 88.32 94.41

10 shot 99.39 92.44 94.95 97.73 98.22 94.55 89.74 92.30 99.48 90.46 94.93

Odorant-specific classification accuracies are depicted in Figure 4.

FIGURE 5 | Multilayer perceptron (MLP) performance on UCSD gas sensor drift dataset during online learning. (A) Classification performance during online training

and testing of Batch 1 data. The network was first trained with ammonia and acetaldehyde (see text); the blue plot denotes the classification accuracy of test samples

of these two odorants. Online training proceeded with acetone (aqua), ethylene (green), ethanol (orange), and toluene (red) in that order, with the final plot denoting the

average classification accuracy of all samples into one of the five (or four) odorant classes. Unlike the EPLff algorithm, the MLP suffered catastrophic forgetting after

training on new sample types. (B–J) MLP performance during online training and testing of Batch 2–10 data, in corresponding order. Except for the combination of

ammonia and acetaldehyde in the first training set, the colors denoting particular odorants are consistent with Figures 2–4.

(using the same STDP rule); sensor scaling factors and all
other parameters were ascertained once, using the 10%
validation set of Batch 1, and held constant thereafter.
Moreover, the none of the above classifier confidence feature
facilitates awareness of when the network may require
retraining; an increase in none of the above classifications

provides an initial cue that then can be evaluated using
known samples.

To assess the efficacy of this approach, we tested the EPLff
algorithm on the UCSD dataset framed as a sensor drift problem.
The procedure for this approach, and consequently the results,
are identical to those of section Online Learning above (Figure 4;
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Table 4). Importantly, the sensor scaling factors and network
parameters were tuned only once, using the validation set from
Batch 1, on the theory that the concept of rapid reset was
incompatible with a strategy of re-optimizing multiple network
hyperparameters. Hence, no parameter changes were permitted,
other than the MC-GC excitatory synaptic weights that were
updated normally during training according to the STDP rule
(In order to avoid duplication of figures, this constraint was
observed in the simulations of section Online Learning as well).
As described above (Figure 4), Batch 1 training samples from all
six odorants again were presented to the network in an online
learning configuration, and classification performance then was
assessed by Batch 1 test data. MC-GC synaptic weights then were
reset to the default values (the reset), after which Batch 2 training
samples were presented to the network in the same manner,
followed by testing with Batch 2 test data including all odorants
and concentrations. We repeated this process for batches 3–
10. We also assessed post-reset classification performance across
all batches based on a maximally rapid reset (i.e., one-shot
learning) and compared this to performance after expanded
training protocols up through 10-shot learning. All classification
performance results (averaged across three full repeats each)
are depicted in Figure 4 and Table 4. In general, while modest
increases in classification accuracy were observed when the
training set size was larger, these results demonstrate scalability,
showing that the EPLff algorithm classifies large sets of test data
with reasonable accuracy even based on small training sets and
lacking control over the concentrations of presented odorants.

DISCUSSION

We present a neural network algorithm that achieves superior
classification performance in an online learning setting while not
being specifically tuned to the statistics of any particular dataset.
This property, coupled with its few-shot learning capacity and
SNN architecture, renders it particularly appropriate for field-
deployable devices based on learning-capable SNN hardware
(Davies et al., 2018; Imam and Cleland, 2019), recognizing that
the interim use of the Hamming distance for nearest-neighbor
classification in the present EPLff framework will not be part
of such a deployable system. This algorithm is inspired by the
architecture of the mammalian olfactory bulb, but is comparably
applicable to any high-dimensional dataset that lacks internal
low-dimensional structure.

The present EPLff incarnation of the network utilizes
one or more preprocessor algorithms to prepare data for
effective learning and classification by the core network.
Among these is an unsupervised concentration tolerance
algorithm derived from feedback normalization models of
the biological system (Cleland et al., 2007, 2012; Banerjee
et al., 2015), a version of which has been previously
instantiated in SNN hardware (Imam et al., 2012). Inclusion
of this preprocessor enables our algorithm to quickly learn
reliable representations based on few-shot learning from
odorant samples presented at different and unknown
concentrations. Moreover, the network then can generalize

across concentrations, correctly classifying unknown test
odorants presented at concentrations on which the network
was never trained, and even estimating the concentrations of
these unknowns.

The subsequent, plastic EPL layer of the network is based
on a high-dimensional projection of sensory input data onto a
network of interneurons known as granule cells (GCs). In the
present feed-forward implementation, our emphasis is on the
roles and capacities of two sequential preprocessor steps followed
by the STDP-driven plasticity of the excitatory MC-GC synapses.
Subsequent extensions of this work will restore the feedback
architecture of the original model (Imam and Cleland, 2019)
while enabling a more sophisticated development of learned
classes within the high-dimensional projection field. Even in its
present feedforward form, however, the EPLff algorithm exhibits
(1) rapid, online learning of arbitrary sensory representations
presented in arbitrary sequences, (2) generalization across
concentrations, (3) robustness to substantial changes in the
diversity and responsivity of sensor array input without requiring
network reparameterization, and, by virtue of these properties,
is capable of (4) effective adaptation to ongoing sensor drift
via a rapid reset-and-retraining process termed reset learning.
This capacity for fast reset learning represents a practical
strategy for field-deployable devices, in which a training sample
kit could be quickly employed in the field to retune and
restore functionality to a device in which the sensors may
have degraded. Importantly for such purposes, the EPLff
algorithm was not, and need not be, crafted to the statistics
of any particular data set, nor was the network pre-exposed
to testing set data as has been done in some approaches
(Zhang and Zhang, 2015; Yan et al., 2017).

Because field-deployable devices require a level of generic
readiness for undetermined or underdetermined problems, and
these EPLff properties favor such readiness, we have emphasized
the portability of these algorithms to neuromorphic hardware
platforms that may come to drive such devices. Interestingly,
many of the features of the biological olfactory system that
have inspired this design are appropriate for such devices. Spike
timing and event-based algorithms are attractive candidates
for compact, energy-efficient hardware implementation (Imam
et al., 2012; Merolla et al., 2014; Qiao et al., 2015; Diehl
et al., 2016; Esser et al., 2016; Davies et al., 2018). Spike
timing metrics can compute similar transformations as analog
and rate-based representations; indeed, it has been proposed
that spike based computations could in principle exhibit all
of the computational power of a universal Turing machine
(Maass, 1996, 2015). STDP is a localized learning algorithm that
is highly compatible with the colocalization of memory and
compute principle of neuromorphic design, and its theoretical
capacities have been thoroughly explored in diverse relevant
contexts (Nessler et al., 2009; Linster and Cleland, 2010;
Schmiedt et al., 2010; Bengio et al., 2015; O’Connor et al.,
2018). Our biologically constrained approach to algorithm design
also provides a unified and empirically verified framework to
investigate the interactions of these various algorithms and
information metrics, to better interpret and apply them to
artificial network design.
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Other groups have previously proposed networks for
gas sensor data analysis inspired by biological olfactory
systems. Models of olfactory bulb and piriform cortical
activity have been applied to analyze chemosensor array data
(Raman and Gutierrez-Osuna, 2005; Raman et al., 2006).
Algorithms based on the insect olfactory system have been
employed to learn and identify odor-like inputs (Diamond
et al., 2016; Delahunt et al., 2018) as well as to identify
handwritten digits—visual inputs incorporating additional
low-dimensional structure (Huerta and Nowotny, 2009;
Delahunt and Kutz, 2018; Diamond et al., 2019). More
broadly, insect mushroom bodies in particular have been
deeply studied in terms of both their pattern separation
and associative learning capacities (Hige, 2018; Cayco-Gajic
and Silver, 2019). These capacities potentiate one another
in service to odor learning and the classification of learned
odor-like signals, though they also have been applied to more
complex tasks (Ardin et al., 2016; Peng and Chittka, 2017).
In the present work, we sought to design artificial learning
networks to replicate some of the most powerful capabilities
of the biological olfactory system, in particular its capacity for
rapid online learning and the fast and effective classification
of learned odorants despite ongoing changes in sensor
properties and the unpredictability of odor concentrations.
Future work will extend this framework to incorporate the

feedback dynamics of the biological system, increase the
dimensionality of sensor arrays, and develop more sophisticated
biomimetic classifiers.
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