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Glossary
Associative memory In this context, the term refers to a type of neural network in which associations between different
elements of a stimulus are stored by strengthening connections between these elements. The most important feature of an
associative memory is that it will restore a previously stored pattern when presented with an incomplete or distorted version of
this pattern.
Attractor In dynamical systems analysis, an attractor is any state of a system in which it will remain if otherwise undisturbed.
The attractor of a simple pendulum is the vertical position; adding magnets or other disturbances to the system may move the
attractor to a new position, or generate additional attractors. Attractors need not be single points; cyclic attractors are common.
Hebbian learning A type of plasticity (“learning”) rule in which interactions between simultaneously active elements, such as
neurons, are strengthened incrementally.
Molecular receptive range Equivalent to receptive field for different chemical ligands. In the olfactory system, a neuron’s
molecular receptive range describes the ensemble of chemicals to which it is responsive.
Olfactory bulb Cortical telencephalic structure receiving direct afferent input from olfactory sensory neurons located in the
nasal cavity, as well as efferent input from multiple regions of the brain.
Signal-to-noize ratio Engineering term quantifying the proportion of the signal of interest (signal) in the total information
stream that is transmitted (signal þ noise). Low signal-to-noize ratios render it difficult to detect or interpret the signal, as it is
buried in noise.

3.33.1 Abstract

Computational models are increasingly essential to systems neuroscience. Models serve as proofs of concept, tests of sufficiency, and
as quantitative embodiments of working hypotheses, and are important tools for understanding and interpreting complex datasets.
In the olfactory system, models have played a particularly prominent role in framing contemporary theories and presenting novel
hypotheses. As the complexity and intricacy of experimental data continue to increase, the importance of computational modeling
will continue to grow. We here review computational models of olfactory processing with a view to the computational role, func-
tionality and brain area studied. We discuss what types of insights can be gained from different levels of computational modeling.
We specifically discuss the computations necessary to perform filtering and contrast enhancement operations, the role of synchrony
and dynamics for computational purposes as well associative memory function. Large scale simplified neural networks as well as
detailed biophysical models are compared and discussed.
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3.33.2 Introduction

In natural environments, airborne chemical stimuli are distributed unpredictably in time and space, and odorants from innumer-
able sources intermix freely. The olfactory system must be able to detect potential signals of interest within these chemically noisy
environments, correctly extract these signals from a complex and changing odor background to form stimulus representations,
compare these constructed representations to those of previously experienced odors, differentiate relevant from irrelevant
stimuli, and cue an appropriate response. Many of the neural circuit elements comprising the olfactory system contribute to these
processes; in particular, multiple feedback and feedforward interactions among olfactory structures, as well as between olfactory and
non-olfactory areas, are thought to contribute to the filtering and construction of olfactory representations. Computational models
of olfactory processing have been increasingly utilized to describe and interpret these complex and interrelated phenomena.

Primary olfactory sensory neurons (OSNs) number in the millions in rodents. Their axons are highly convergent, targeting
specific, discrete neuropilar synaptic regions within the input layer of the olfactory bulb known as glomeruli. In hamsters, for
example, between 1300 and 4700 OSNs believed to express the same odorant receptor complement converge upon each glomer-
ulus (Schoenfeld and Knott, 2004). These large populations of redundant OSNs and their correspondingly high convergence ratios
have been proposed to yield advantages such as improved stimulus sensitivity, an improved signal to noise ratio, and an increased
range of tuning to different odorant concentrations (Cleland and Linster, 1999; Duchamp-Viret et al., 1989; Meisami, 1989; van
Drongelen et al., 1978). The molecular receptive ranges, or chemical receptive fields, of these odorant receptors overlap substan-
tially, such that the identity of odorants is not associated with the activation of a specific receptor, but rather is represented by
a distributed, combinatorial code (Adrian, 1953; Kauer, 1991; Moulton, 1967; Stewart et al., 1979), now recognized as a pattern
of activation across many receptors. Owing to the specific convergence of OSN axons, these odor-specific activity patterns can be
most clearly observed in imaging studies of olfactory bulb glomeruli (Fletcher and Bendahmane, 2014; Friedrich and Korsching,
1997; Meister and Bonhoeffer, 2001; Rubin and Katz, 1999; Wachowiak et al., 2002). These overlapping representations underlie
two critical properties of the olfactory system that a labeled-line solution would not. First, the number of unique odor representa-
tions is not limited to the number of different receptor types (roughly 1000 in mice (Mombaerts, 1996), but can be estimated asmn,
where n denotes the number of receptor types and m denotes the number of recognizable states that each sensor can assume, ulti-
mately limited by the signal to noise ratio of the system. Even if only two receptor states, active and inactive, are recognized, this
enables roughly 21000 potential odor stimuli to be represented in mice. Second, the fact that structurally and perceptually similar
odorant molecules will activate correspondingly overlapping sets of olfactory establishes a basis for the recognition of stimulus
similarity in the olfactory system receptors (Cleland et al., 2002; Linster et al., 2002; 2001). This is a prerequisite for basic postsen-
sory cognitive processes such as generalization (Cleland et al., 2002, 2009; Shepard, 1987; Shepard and Chang, 1963) and a toler-
ance for variance among repeated stimulus samples that a labeled-line system would have no clear means of generating.

Distributed patterns of activity in response to chemical stimuli are transmitted to the olfactory bulb via OSN axons that termi-
nate in the glomeruli of its input layer. The olfactory bulb is believed to filter and transform these incoming sensory data, perform-
ing normalization, contrast enhancement, and similar operations before conveying the processed olfactory information to several
different secondary olfactory structures via mitral cell axon collaterals (Cleland and Linster, 2003; Nagayama et al., 2014). Notably,
the bulb constitutes the last common stage at which olfactory sensory representations can be processed before the signal diverges
dramatically into these multiple secondary structures. It is clear from recent investigations that the perceptual qualities of odorants
can be predicted, to a limited degree, from the patterns of activation that they evoke at the olfactory bulb input layer (Cleland et al.,
2002; Linster and Hasselmo, 1999; Linster et al., 2001, 2002). However, several aspects of odor perception, e.g., changes in percep-
tion and discrimination capacity due to odor intensity or prior experience, cannot be predicted solely by this first-order represen-
tation as reflected in glomerular activation patterns (Cleland et al., 2009). Furthermore, the olfactory bulb receives substantial
centrifugal projections from both cortical and neuromodulatory centers, and its activity is strongly regulated by learning and expe-
rience. It is therefore safe to assume that the olfactory bulb plays an important role in processing incoming sensory information.
Indeed, many models of olfactory bulb signal processing have been developed, which are grouped here into studies of (1) filtering
and contrast enhancement, (2) mechanisms underlying oscillations and spike synchronization, and (3) odor segmentation and
associative memory function. In addition, a number of detailed biophysical models of bulbar neurons have been constructed,
in many cases to address how their intrinsic properties underlie and interact with network properties.

3.33.3 Filtering and Contrast Enhancement

The high convergence ratio between OSNs expressing a particular odorant receptor and their target glomeruli in the olfactory bulb
(Fig. 1A) is believed to improve the signal to noise ratio during odorant detection (van Drongelen et al., 1978), potentially over-
coming the limiting noise inherent in the transduction mechanisms of individual OSNs (Lowe and Gold, 1995). In principle, this
property improves the coding capacity of the olfactory system, increasing the number of different odor-specific patterns that can be
discriminated, as well as improving the maximum reliable sensitivity of the system (Fig. 1B). Another modeling study has suggested
that this same property can be employed to increase the range of odor ligand concentrations that can be represented by olfactory
bulb glomeruli without saturation (Fig. 1C) (Cleland and Linster, 1999). This hypothesis provides a possible answer to the conun-
drum of how collective concentration-response curves measured by glomerular imaging can be substantially broader than those
measured in individual OSN recordings (Bozza et al., 2002; Friedrich and Korsching, 1997), enabling preservation of the ratios
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of activation levels among glomeruli across broader concentration ranges and hence potentially facilitating the recognition of odor
quality across changes in concentration (Cleland et al., 2011; Cleland et al., 2007). Another approach has been suggested by Anton
et al., (1991). Noting that the activity of each glomerulus is sampled and conveyed centrally by a number of mitral cells (on the
order of 50 in hamsters (Schoenfeld and Knott, 2004)), and that mitral cell firing frequencies do not scale monotonically with
concentration as do those of OSNs, these authors proposed that the synaptic circuitry within each glomerulus could compute
a frequency-to-spatial transformation on the incoming information. That is, the number of responding mitral cells within a glomer-
ulus, but not their firing rate, would depend on the firing rates of the sensory neurons projecting to that glomerulus in response to
odor stimulation (Fig. 1D).

Contrast enhancement is a common property of sensory systems that narrows, or sharpens, sensory representations by specif-
ically inhibiting neurons on the periphery of the representation, hence enhancing the contrast between signal and background.
A number of computational models have investigated the contrast enhancement potential of olfactory bulb circuitry (Fig. 2A),
most of which, by analogy with the retina, have investigated the potential role of lateral inhibitory projections. Classically, bulb
models have emphasized lateral inhibition mediated by mitral cell lateral dendrites (Davison et al., 2003; Rall and Shepherd,
1968; Schild, 1988; Shepherd and Brayton, 1979; Urban, 2002). These lateral dendrites form reciprocal synapses with inhibitory
granule cell spines in the external plexiform layer of the bulb, forming a network through which mitral cells inhibit one another
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Figure 1 Glomerular computations and convergence. (A) Simplified structure of the olfactory bulb as represented in most computational models.
Large populations of OSNs expressing the same receptor (particular shades of gray) converge onto common glomeruli in the olfactory bulb, within
which they synapse onto the dendrites of periglomerular (blue) and mitral (red) cells. Mitral cells also excite granule cells (green) via their lateral
dendrites, and granule cells in turn inhibit mitral cells; functionally, this mediates lateral inhibition between mitral cells. Periglomerular cells are
primarily associated with one or a small number of glomeruli and project axons to a few other glomeruli; these have also been suggested to mediate
lateral inhibition between mitral cells. A number of other cell types have also been characterized in the bulb, such as short-axon and tufted cells, that
are rarely included in computational models; furthermore, established heterogeneity within the cell types modeled has usually been neglected. (B) The
high convergence of OSN axons onto mitral cells within each glomerulus significantly improves the signal-to-noize ratio in mitral cells as compared
to OSNs. Even if a weak odorant stimulus were to evoke only a single additional spike in each OSN above its basal rate of spiking (OSN activity; bold
lines), this high convergence ratio can generate a robust odor responses in a postsynaptic mitral cell (Mitral cell activity), hence enabling mitral cells
to reliably represent odor stimuli at lower concentrations than can OSNs (van Drongelen et al., 1978). Horizontal bars depict the time of odorant
presentation. (C) While OSN concentration-activation curves are steep, enabling accurate representations of ligand-receptor binding over a range of
roughly one log unit concentration, the considerably broader curves observed in glomeruli can be explained if the convergent OSN population is
nonuniform in spare receptor capacity or other determinants of intracellular gain (Cleland and Linster, 1999). If OSNs with identical odorant
selectivity but exhibiting different functional spare receptor capacities (gray sigmoids) project onto a single glomerulus, the summed concentration-
activation curve of that glomerulus can span several log units of concentration (black sigmoid). (D) Frequency-to-spatial transformation by local
glomerular circuits would activate different populations of mitral cells within each glomerulus as a function of the average firing rate of the
convergent OSNs (Anton et al., 1991). Low concentration odorants (left panel) evoke weak activity in a given receptor-specific OSN subpopulation,
generating increased activity in only one mitral cell. In contrast, a high concentration odor stimulus (right panel) evokes greater activity in the OSN
population and hence generates measurable excitatory responses in three mitral cells. Horizontal bars depict the time of odorant presentation.
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as well as themselves (Isaacson and Strowbridge, 1998), although the region receiving this inhibition is not clearly localized
(Debarbieux et al., 2003; Djurisic et al., 2004; Luo and Katz, 2001). Subsequent models proposed that contrast enhancement
was instead mediated by lateral inhibition mediated by the relatively superficial periglomerular (PG) cells (Linster and Gervais,
1996; Linster and Hasselmo, 1997) (Figs. 1A and 2B). This hypothesis offered the substantial advantage that lateral inhibition could
be delivered onto mitral cells in the glomerular region of their apical dendrites, a location better capable of preventing spike initi-
ation in these cells. In a model based on this hypothesis, Linster and Hasselmo (1997) further showed that if the activation of PG
cells is modulated by cholinergic inputs from the horizontal limb of the diagonal band, a relatively stable number of active mitral
cells can be maintained independent of the intensity of olfactory input or the set of OSNs activated by the odorant. In this model,
granule cells served instead to modulate the gain of mitral cell activity, and were necessary in order to obtain stable average firing
rates. Indeed, subsequent studies have shown that PG cells are appropriately modulated by acetylcholine (Castillo et al., 1999), and
some of the behavioral predictions from these models have been tested in rats (Linster and Cleland, 2002; Linster et al., 2003).
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Figure 2 Contrast enhancement. (A) Contrast enhancement is a phenomenon observed in most sensory systems by which marginally activated
neurons are excluded from a stimulus-specific ensemble by inhibition, hence sharpening the sensory representation and differentiating it from other,
similar representations. In the absence of contrast enhancement, the tuning curves of cells 1 and 2 substantially overlap (left panel). If contrast
enhancement is enabled, e.g., by the addition of lateral inhibition such that each cell inhibits the other, the two cells both become more narrowly
tuned, and their receptive fields may no longer overlap (right panel). (B) Computational models of the olfactory bulb have proposed that inhibitory
periglomerular (PG) cells could mediate contrast enhancement in the glomerular layer of the olfactory bulb. In these models, PG cells receive direct
sensory input within a given glomerulus and inhibit mitral cells in neighboring glomeruli via axonal projections (Fig. 1A). If an odor stimulus activates
a range of neighboring glomeruli (Glomerular input signal), increasing the level of PG cell-mediated inhibition would lead to concomitantly sharpened
representations among mitral cells, the output layer of the olfactory bulb. With strong contrast enhancement, only the most strongly activated mitral
cells are activated, while weakly activated mitral cells are inhibited (Linster and Gervais, 1996; Linster and Hasselmo, 1997). (C) Non-topographical
contrast enhancement based on local glomerular computations. In this model, contrast enhancement is generated within the stimulus-response
profile of each individual glomerulus, resulting in sharpening of the odor-evoked representation across the glomerular layer. Within each glomerulus,
mitral (Miin) and periglomerular (PGin) cells have the same tuning curves but different response properties, and both receive parallel input from
OSNs. Mitral cell output (Miout) is additionally shaped by PG-mediated dendrodendritic inhibition, such that only the most strongly excited mitral cells
are activated, while more weakly excited mitral cells exhibit net inhibitory responses (Cleland and Sethupathy, 2006). The shape of the Miout curve
generates the familiar on-center/inhibitory-surround function of contrast enhancement (inset).
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However, these models still suffer from the limitation that nearest-neighbor inhibitory interactions do not appropriately map onto
similarities in the molecular receptive ranges of glomeruli or their constituent OSNs (Cleland, 2010; Cleland and Sethupathy, 2006;
Soucy et al., 2009). Contrast enhancement, the effects of which have been observed in the olfactory bulb (Yokoi et al., 1995), can be
functionally defined as a process of competition between neurons proportional to the similarity of the information that they
mediate. Simplified models of the olfactory system, based on one-dimensional odor subspaces, have been able to implement
contrast enhancement using lateral inhibition (Cleland and Linster, 2002; Linster and Cleland, 2001; Linster and Gervais, 1996;
Linster and Hasselmo, 1997, 1999; Linster and Smith, 1997), and have been effective at interpreting behavioral and physiological
data derived from single monotonically varying odorant series (Cleland et al., 2002, 2009; Cleland and Narla, 2003; Linster and
Hasselmo, 1999; Yokoi et al., 1995). However, to escape this limitation and model more realistic, high-dimensional odor spaces
(Alkasab et al., 2002; Cleland, 2014; Hudson, 1999; Korsching, 2001), subsequent models have relied upon networks constructed
so that the strength of PG-mediated inhibition is effectively proportional to receptive field similarity rather than the physical prox-
imity of glomeruli. Networks based on this assumption have been shown to best reproduce calcium imaging data obtained from
honeybee OSNs and projection neurons (analogous to mitral cells), while networks based on decremental lateral inhibition per-
formed comparably to networks based on random inhibitory projections (Linster et al., 2005). Another such model has successfully
reproduced mixture processing properties measured in rats (Linster and Cleland, 2004; Wiltrout et al., 2003). Finally, non-
topographical models take an entirely different approach to olfactory contrast enhancement, relying solely on intraglomerular
computations and broad feedback inhibition to effect contrast enhancement via a “winner-take-most” algorithm (Fig. 2C)
(Cleland, 2014; Cleland et al., 2007; Cleland and Linster, 2012; Cleland and Sethupathy, 2006). This approach does not rely on
odorant feature similarities being embedded into bulbar odor maps a priori, as it is independent of the physical location of
glomeruli and of specific lateral inhibitory projections. Rather, the maps of stimulus feature similarity that underlie contrast
enhancement are naturally inherited from the cross-activation patterns of OSNs by odorants. This property renders this contrast
enhancement algorithm uniquely robust to changing or unpredictable chemosensory environments (Cleland, 2014; Linster and
Cleland, 2010).

Recent experiments analyzing the role of adult-born granule cells in olfactory learning suggest a role for these deeper interneu-
rons for odor discrimination and contrast as well. Specifically, the rewiring of granule cell networks in response to olfactory inputs
underlies changes in odor perception following perceptual leaning via passive exposure to odorants (Mandairon et al., 2018; Mor-
eno et al., 2009). These changes in perception can arise due to increased inhibitory efficacy in the circuit (Mandairon et al., 2006) as
well as through the specific rewiring of adult-born granule cells in an activity-dependent manner (Chow et al., 2012; Sailor et al.,
2016). Recent modeling work suggests that the convergence of afferent and top-down information converging on these interneu-
rons is an important determinant of the integration of adult-born neurons into olfactory bulb circuitry (Adams et al., 2019).

3.33.4 Mechanisms Underlying Oscillations and Spike Synchronization

While recent models favor glomerular-layer mechanisms for contrast enhancement, granule cell activity also clearly shapes mitral
cell response patterns, and hence the presumptive odor representations that emerge from the olfactory bulb. Specifically, several
computational models of the olfactory bulb have suggested that the temporal pattern of spiking among mitral cells may play
a role in odor representation (Meredith, 1992; Schild, 1988; White et al., 1998; White et al., 1992; White and Kauer, 2001). While
it is clear that temporal response patterns in mitral cells do change as a function of odor identity (Fig. 3A), there is as yet no broadly
accepted theory of how these response patterns may contribute to the representation of odorant stimuli.

One of the most widely studied features of olfactory bulb processing has been the dynamic oscillatory activity patterns observed
in the bulb in response to odor stimulation. Models of these phenomena have traditionally studied these responses as coupled oscil-
lators, attributing the dynamics in whole or in part to reciprocal feedback interactions between mitral cell secondary dendrites and
granule cells (Fig. 3B) (de Almeida et al., 2013; Erdi et al., 1993; Ermentrout and Kleinfeld, 2001; Freeman, 1979; Freeman, 1987;
Freeman, 1994; Grobler and Erdi, 1991; Li and Cleland, 2013; Li and Cleland, 2017; Li and Hopfield, 1989; Linster et al., 2011).
Some researchers have proposed that odor quality may be represented in dynamic attractors formed in the olfactory bulb (Break-
spear, 2001; Erdi et al., 1993; Freeman, 1979, 1987, 1994; Fukai, 1996; Hoshino et al., 1998; Li and Hopfield, 1989). Modulation of
oscillatory dynamics may underlie changes in odor perception as observed in behavioral experiments manipulating noradrenergic
and cholinergic activity in the olfactory bulb by changing synchronization patterns (de Almeida et al., 2013; de Almeida et al., 2015;
Devore et al., 2014; Escanilla et al., 2010; Li and Cleland, 2013). However, it is increasingly clear that the dynamics of the olfactory
bulb are tightly coupled with those of the piriform cortex, and that both depend on mutual feedback between the two structures
(Gray and Skinner, 1988; Kay, 2014; Kay and Lazzara, 2010; Martin et al., 2004; Neville and Haberly, 2003; Osinski and Kay, 2016);
combined bulb-cortex models have suggested possible roles for these interactions (Barreiro et al., 2017; de Almeida et al., 2013,
2015; Fukai, 1996; Grabska-Barwinska et al., 2017; Li and Hertz, 2000). Other aspects of piriform cortical dynamics have also
been modeled (Claverol et al., 2002; Liljenstrom and Hasselmo, 1995; Wilson and Bower, 1992; Xu and Principe, 2004), albeit
with less focus on their functional role (but see (Granger and Lynch, 1991).

Recently, models of these field oscillatory properties have begun to emphasize their relationship to the regulation of spike timing
in mitral cells (Davison et al., 2003; Margrie and Schaefer, 2003), suggesting that patterns of spike synchronization among mitral
cells responding to the same sensory input are important contributors to the odorant representation at this level (Fig. 3C). This
phenomenon has been extensively modeled in the insect antennal lobe, a functionally comparable analog of the olfactory bulb
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(Bazhenov et al., 2001a,b; Laurent et al., 2001; Stopfer et al., 1997). In these models, the regulation of spike synchronization among
secondary neurons can mediate stimulus salience and contrast enhancement between similar odorants (Cleland and Linster, 2002;
Linster and Cleland, 2001), and can dramatically influence the readout of information at the next level of processing (Sivan and
Kopell, 2004). Olfactory bulb temporal codes, reflecting specific sequences of principal neurons activated by an odor, can represent
odor quality and be read by specific models of piriform cortex (Stern et al., 2018; Wilson et al., 2017).

3.33.5 Odor Segmentation and Associative Memory Function

Odor segmentation is the general term for the problem of how the olfactory system is able to segregate and identify different odor-
ants that are encountered simultaneously. As most odors comprise multiple separate odorant molecules, it is far from clear how the
olfactory system can parse the multitude of odorant stimuli present at any given time and attribute each to appropriately separate
sources. One approach has been to hypothesize that odors emitted from different sources can be segregated by OB circuitry based
upon their differential fluctuations in time (Fort and Rospars, 1992; Hendin et al., 1998; Hopfield, 1999). Odor segmentation could
thereafter be performed in the OB using source-separation algorithms dependent upon associative memory function. Generally,
such models hypothesize that associative memories for patterns of olfactory bulb activity evoked by known odorants become
embedded in bulbar circuitry, and can then be used to recognize these patterns when they recur, even in degraded form. Specifically,
a model by Hendin et al. (1998) illustrates how, if the glomerular layer feeds into a mitral-granule cell layer for which appropriate
dynamics for an associative memory function have been implemented, each odor can be separately represented in successive inha-
lation cycles when multiple (known) odors are presented at the same time.
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Figure 3 Oscillations and synchrony. (A) Any given mitral cell in the olfactory bulb may respond to different odorant stimuli (A–D) with a variety of
temporally complex spike patterns including interwoven excitatory and inhibitory phases. It has been proposed that these temporal patterns may
contribute to odor representations in the vertebrate olfactory bulb and the analogous insect antennal lobe (Laurent, 1999; Laurent et al., 2001).
Horizontal bar depicts the time of odorant presentation. (B) The reciprocal synaptic interactions between mitral (Mi) and granule (Gr) cells have often
been simulated as a system of coupled oscillators driven by external inputs. In such models, variance of stimulus amplitudes across these inputs
generates a map of field oscillations with variable amplitudes and fixed phase lags across the olfactory bulb. For clarity, the output from only a single
column is depicted. (C) Field oscillatory dynamics are believed to reflect and/or influence spike timing in mitral cells, potentially resulting in odor-
specific populations of mitral cells based on spike synchrony rather than overall activity. While the overall activity patterns evoked by odors A and B
are very similar, selection for spikes relatively synchronized with one another and with the oscillatory field potential reveals two clearly odor-specific
subpopulations (bold spikes within dotted boxes).
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Olfactory associative memory functions have been more commonly attributed to the piriform cortex, one of the targets of mitral
cell axons projecting from the olfactory bulb (Fig. 4). Specifically, the piriform cortex has been proposed to mediate the associative
memory functions necessary for odor-context learning (Haberly, 2001; Haberly and Bower, 1989; Hasselmo et al., 1990) and hier-
archical clustering (Ambros-Ingerson et al., 1990). Indeed, the extensive intrinsic feedback network in this cortex and its integration
with afferent inputs closely resembles the structure of traditional theoretical associative memory networks as first described by Marr
(1971). Several laboratories have constructed models of piriform cortex implementing these associative memory functions
(Ambros-Ingerson et al., 1990; Barkai and Hasselmo, 1994; Haberly and Bower, 1989; Hasselmo et al., 1997; Hasselmo et al.,
1990) as well as exploring the role of cholinergic modulation in their regulation (Hasselmo et al., 1990, 1997; Linster and Has-
selmo, 2001; Linster et al., 2003; Patil and Hasselmo, 1999). Later work with combined olfactory bulb-cortex models has explored
to what extent bulbar representations and dynamics contribute to cortical learning, and tested hypotheses from these models exper-
imentally (de Almeida et al., 2013, 2015, 2016; Devore et al., 2014; Stern et al., 2018).

3.33.6 Detailed Biophysical Models of OB Neurons

Most models of the olfactory system to date have emphasized network-level interactions and the properties of olfactory bulb and
piriform cortical circuitry, using simplified cell models conducive to these larger-scale simulations. However, several relatively
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detailed biophysical models of olfactory neurons – particularly OSNs and mitral cells –also have been constructed. Several detailed
OSNmodels have illustrated how ligand-receptor binding and nonlinear transduction processes can underlie several experimentally
observed response properties of these cells (Cleland and Linster, 1999; Kaissling, 1998, 2001; Kaissling and Rospars, 2004; Lansky
and Rospars, 1998; Malaka et al., 1995; Rospars et al., 2000; Rospars et al., 1996; Vermeulen et al., 1997; Vermeulen and Rospars,
1998; Vermeulen et al., 1996). Compartmental models of mitral cells have been used to elucidate intrinsic cellular phenomena,
such as the localization of spike initiation in mitral cells (Chen et al., 2002; Shen et al., 1999), long-term potentiation at the
OSN-mitral synapse (Ennis et al., 1998), or their intrinsic dynamics (Li and Cleland, 2017; Rubin and Cleland, 2006; Viertel
and Borisyuk, 2019). Other compartmental models have focused on bridging the gap between cellular and systems properties in
both vertebrate and insect systems (Bazhenov et al., 2001a; Bhalla and Bower, 1993; Cleland and Sethupathy, 2006; Davison
et al., 2000; Davison et al., 2003; Li and Cleland, 2013, 2017, 2018; Li et al., 2015).

3.33.7 Summary and Conclusions

Computational models have an established and growing role within systems neuroscience. As our understanding of neural process-
ing and interactions becomes more sophisticated, computer models of these systems are increasingly necessary in order to under-
stand and interpret experimental results. Models serve as proofs of concept, tests of sufficiency, and as quantitative embodiments of
working hypotheses. In the olfactory system in particular, computational modeling will no doubt be essential to understanding the
integration of the many factors influencing the construction and transformation of odor representations. Many of the functions
ascribed to olfactory networks have been proposed and analyzed using computational modeling; these guide and interpret exper-
imental work. Specifically, the neural networks and mechanisms underlying specific functions are particularly well described using
models of known networks. Biophysical models specifically have contributed to the fields thinking about mechanisms underlying
oscillations in the olfactory bulb. Future directions should include coordinated computational and experimental approaches to
study feedback interactions between olfactory brain areas.
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