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Spike timing-based mechanisms of coding and computation 
operating within plastic neural circuits present a central prob-
lem of interest to both neuroscience and neuromorphic com-

puting. We have found that a coordinated set of these mechanisms, 
hypothesized for the neural circuitry of the external plexiform layer 
(EPL) of the mammalian main olfactory bulb (MOB), exhibits 
rapid learning of arbitrary high-dimensional neural representations 
and robust memory recall despite occlusion by random sources 
of destructive interference. On the basis of these mechanisms, we 
derived a neural algorithm for the learning of odourant signals 
and their robust identification under noise, and instantiated it in 
the Intel Loihi neuromorphic system1 (Supplementary Methods). 
The algorithm operates over a network of excitatory and inhibi-
tory units that embed feedforward and recurrent feedback circuit 
motifs. Information in the network is represented by sparse patterns 
of spike timing2 measured against an underlying network rhythm. 
Learning is based on local spike timing-dependent plasticity rules, 
and memory is retrieved over sequential gamma-breadth packets of 
spiking activity. The network can be effectively trained using one-
shot learning, and innately supports online learning; that is, addi-
tional training on new stimuli does not disrupt prior learning.

While both biological and artificial olfaction systems recognize 
chemical analytes based on activity patterns across arrays of weakly 
specific chemosensors3,4, mammalian olfaction demonstrates levels 
of performance in signal restoration and identification currently 
unmatched by artificial systems. Indeed, the underlying identifi-
cation problem is deceptively difficult. Natural odours comprise 
mixtures of many different odourant molecules5; moreover, under 
natural conditions, different odours from many separate sources 
intermingle freely and, when sampled together, chemically occlude 
one another in competition for primary chemosensor binding 
sites6–9. This occlusion substantially disrupts the primary sensory 
activation patterns that provide the basis for odour recognition. 
Moreover, the patterns of potential occlusion are unrelated to the 
input statistics of the odours of interest, and hence unpredictable. 
This presents an extraordinary signal restoration challenge that has 
been recognized as one of the central problems in neuromorphic 
olfaction3,10,11. By designing a neuromorphic algorithm based on 
computational principles extracted from the biological system, and 

implementing it on a compact, field-deployable hardware platform, 
we sought to dramatically improve the performance and capabili-
ties of artificial chemosensory systems deployed into uncontrolled 
environments.

This biological system exhibits several critical properties and 
mechanisms that we used to address the problem. Primary sensory 
representations of odour stimuli at steady state constitute intrinsi-
cally high-dimensional feature vectors, the dimensionality of which 
is defined by the number of receptor types (columns) expressed 
by the olfactory system12; this number ranges from the hundreds 
to over 1,000 in different mammalian species. Each of these recep-
tor types induces spiking in a corresponding group of principal 
neurons (mitral cells; MCs). Mechanistically, fast coherent oscilla-
tions in the gamma band (around 30–80 Hz), which are intrinsic 
to MOB circuitry13–15, phase-restrict the timing of these MC action 
potentials13,16. This property discretizes spiking output into gamma-
breadth packets, here enabling a robust within-packet phase 
precedence code17,18 that disambiguates phase-leading from phase-
lagging spikes within each gamma cycle. Recurrent activity loops 
in OB circuitry evince control systems architecture, implementing 
gain control in the superficial layers19–21 and enabling associative 
attractor dynamics in the deeper network22. Odour learning in the 
biological system is localized and rapid, and depends substantially 
on plastic synapses within the MOB23–29, here instantiated as spike 
timing-dependent plasticity rules. The neuromodulatory tuning of 
MOB circuit properties30–32 here is leveraged as an optimization tra-
jectory rather than a fixed state variable. Adult neurogenesis in the 
MOB, known to be required for odour learning and memory26,27,33,34, 
here provides indefinite capacity for lifelong learning through the 
permanent differentiation and replacement of plastic interneurons.

Our algorithm is derived from these computational properties 
of the EPL neural circuit in the biological MOB. We train and test 
the algorithm using data from the Vergara et al. dataset4, acquired 
from an array of 72 chemosensors mounted across a wind tunnel, 
and show that it rapidly learns odour representations and robustly 
identifies learned odours under high levels of destructive interfer-
ence, as well as in the presence of natural variance arising from 
odourant plume dynamics. The destructive interference model, 
impulse noise, models the effects of intermixed, simultaneously 
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sampled background odourants that effectively randomize the 
activation levels of a substantial fraction of the primary sensors on 
which odour recognition depends. The algorithm exhibits online 
learning and generalizes broadly beyond experience; accordingly, it 
can be trained on relatively clean diagnostic samples using one- or 
few-shot learning and then deployed into environments containing 
unknown contaminants and other sources of interference.

Network architecture and plasticity
The structure of the model network (Fig. 1a) was based on the 
circuitry and computational properties of the mammalian MOB, 
optimized for efficient implementation as a spiking network on 
the Loihi chip (Fig. 1b). In particular, we instantiated some core 
principles of MOB computation that we have hypothesized for the 
biological system12,14,15,17,35, including (1) the dynamically acquired, 
learning-dependent topology of the lateral inhibitory network of 
the EPL, (2) gamma-discretized spike timing-based computation in 
the EPL, (3) the widespread excitation of granule cell interneurons 
(GCs) by MCs and the local, spike-based inhibition of MCs by GCs, 
(4) the manifestation of GC inhibition of MCs as delays in MC spike 
times on the gamma timescale, (5) the permanent differentiation 
of GCs by the process of odour learning and the consequent need 
for replacement by adult neurogenesis, and (6) the deployment of 
neuromodulation as a dynamic optimization trajectory rather than 
a stationary state.

Like the mammalian MOB, the neuromorphic EPL network is 
implicitly columnar (Fig. 1a). Each column comprises a single MC 
principal neuron as well as up to 50 inhibitory GC interneurons, 
coupled by moderately sparse intercolumnar excitatory synapses 
(connection probability 0.2) and local (intracolumnar) inhibitory 
synapses (Supplementary Methods). We activated the MCs of a 
72-column EPL network using the ‘Gas sensor arrays in open sam-
pling settings’ dataset published by Vergara and colleagues4 (see 
‘Data availability’). Samples were drawn from an array of 72 metal 
oxide gas sensor elements spatially distributed across the full 1.2 m 
breadth of a wind tunnel4 (Fig. 1c). From the 180 s datastreams 
comprising each odourant presentation in this dataset, sensor array 
responses were sampled (‘sniffed’) from discrete points in time and 
presented to the EPL network for training or testing. That is, indi-
vidual odour samples (‘sniffs’) comprised discrete feature vectors 
in which the pattern of amplitudes across vector elements reflected 
odour quality, as well as concentration-based variance owing to 
plume dynamics in the wind tunnel.

The biological EPL network is intrinsically oscillogenic in the 
gamma band (30–80 Hz)15,36, and MC action potentials are statisti-
cally phase-constrained with respect to these local oscillations13,16. 
In our algorithm, MC spikes were constrained in time by an ongo-
ing network oscillation with alternating permissive and inhibitory 
epochs reflecting the periodic inhibition of the OB gamma cycle14,36 
(Fig. 1d). Sensory integration and MC spiking were enabled only 
during permissive epochs, whereas inhibitory epochs reset and 
held the activation of all MCs at zero. Therefore, in the absence 
of learning, and given stationary sensor input, the temporal pat-
terning of spikes evoked by a given odour directly reflected sen-
sor activation levels—stronger excitation evoked correspondingly  
earlier spikes—and was repeated across successive gamma cycles 
(Fig. 1d). Different odours evoked correspondingly different spa-
tiotemporal spike patterns across the MC population, thereby gen-
erating a hybrid channel/phase code, or precedence code, on the 
gamma timescale.

Critically, this dynamical architecture enables multiple itera-
tive cycles of processing for each sample by taking advantage of 
the differences in timescale between sampling (4–8 Hz in rodent 
sniffing, 100 Hz in the Vergara et al. dataset) and processing (30–
80 Hz gamma oscillations in the rodent OB, 100 kHz in the Loihi 
chip). In the present instantiation of the algorithm, five gamma 
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Fig. 1 | Model structure and signal encoding. a, Architecture of the 
neuromorphic model. Sensor input is delivered to the apical dendrite 
(AD) of each MC, which in turn excites its corresponding soma (S). MC 
activity propagates via lateral dendrites (purple) to excite the dendrites 
of GCs (orange). The distribution of excitatory connections (open circles) 
is sparse and independent of spatial proximity. In contrast, GC inhibitory 
connections are local. b, Architecture of the Intel Loihi neuromorphic chip1. 
Neuromorphic cores (blue squares) operate in parallel and communicate 
through a mesh of spike routers (grey circles). LMT, Lakemont ×86 
processors; IO, input/output. c, Illustration of odourant delivery to a 
72-element chemosensor array within a wind tunnel4. d, Presentation of 
acetone (top) or toluene (bottom) to the chemosensor array resulted in 
characteristic patterns of spiking activity across the 72 MCs (ordinate). 
Stronger sensor activation led to correspondingly earlier MC spikes within 
each gamma cycle. Inhibitory epochs are denoted by black bars; permissive 
epochs are denoted by white bars. The fifth gamma cycle is expanded in 
time (rightmost panels) to illustrate the distribution of MC spike times.
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cycles, each requiring 0.4 ms to execute (Methods), were embed-
ded within each odour presentation (‘sniff ’) for both training and 
testing. After learning, GC feedback inhibition on each succes-
sive gamma cycle iteratively modified MC spike timing and hence 
altered the precedence code. Network output thus was interpreted 
as an evolving series of representations, in which each discrete 
representation comprised a population of spikes, with each spike 
defined by the identity of the active MC and the spike latency within 
the corresponding gamma cycle. These representations then were 
classified based on their similarities to each of the representations 
known by the network.

Each gamma-constrained array of MC action potentials, in 
addition to serving as network output, also drove its complement 
of postsynaptic GCs across the network. During learning, the syn-
aptic weights between MCs and GCs were systematically modified 
by experience. GCs were modelled as single-compartment neurons 
that accumulated excitatory synaptic inputs from their widely dis-
tributed presynaptic MCs. On reaching threshold, they generated 
spike events that inhibited their co-columnar postsynaptic MC in 
the subsequent gamma cycle.

GC spiking also initiated excitatory synaptic plasticity. 
Specifically, GCs learned to respond to higher-order stimulus fea-
tures by becoming selective for specific combinations of MC spik-
ing activity. To do this, we implemented a heterosynaptic spike 
timing-dependent plasticity rule that learned these input combina-
tions in terms of a spike phase precedence coding metric on the 
gamma timescale17. Specifically, the weights of synapses mediating 
presynaptic spikes that immediately preceded a postsynaptic spike 
were strengthened, and the weights of all other incoming synapses, 
including those in which the presynaptic MC spiked at other times 
or not at all, were weakened (Fig. 2a). Accordingly, spiking GCs ulti-
mately learned a fixed dependency on the synchronous firing of a 
set of k MC inputs, with inputs from other MCs decaying to zero 
(effectively a ‘k winners take all’ learning rule). Consequently, at the 
end of the training period, the response to each trained odourant 
evoked a distributed ensemble of GCs tuned to a diversity of stimu-
lus-specific higher-order correlation patterns (Fig. 2b).

Spikes evoked by GC interneurons delivered synaptic inhibition 
onto the MC of their local column. As proposed for the biologi-
cal system, the weights of GC-mediated inhibitory inputs regulated 
the timing of MC spikes within the permissive phase of the gamma 
cycle, with stronger weights imposing greater MC spike time delays 
within each gamma cycle14,35,37. Specifically, a GC spike blocked the 
generation of a spike on its follower MC for a period of time corre-
sponding to the inhibitory synaptic weight. During odour learning, 
the durations of GC spike-evoked inhibitory windows were itera-
tively modified until the release of inhibition on the MC soma coin-
cided with a threshold crossing in the MC apical dendrite resulting 
from integrated sensory input (Fig. 2c). During testing, the end of 
the GC inhibitory window permitted the MC to fire, and evoked 
a rebound spike in the MC even in the absence of sufficient api-
cal dendritic input. Synaptic inputs from multiple local GCs onto a 
common MC were independent of one another, enabling a diverse 
range of higher-order GC receptive fields to independently affect 
the MC. During testing, occluded inputs activated some fraction 
of GCs, which then modified their postsynaptic MC spike times 
such that the representation in the next gamma cycle was closer to a 
learned odourant, hence activating an increased fraction of its cor-
responding GCs. This process continued iteratively until the learned 
representation was recalled (Fig. 2d and Supplementary Notes).

Odour learning and memory
We first trained the 72-column network on the odourant toluene 
in one shot (that is, one sniff, enabling learning over five gamma 
cycles), and then, with plasticity disabled, tested the response of 
the trained network to presentations of toluene contaminated with 
destructive interference. To generate this interference, we entirely 
replaced a proportion P of the sensory inputs with random values 
(impulse noise, P = 0.6 unless otherwise indicated) to represent 
strong and unpredictable receptor occlusion through simulta-
neous activation or inhibition by other ambient odourants. The 
occluded inputs remained consistent over the five gamma cycles 
of a sniff. In a naïve network, the presentation of occluded toluene 
yielded an essentially stationary and uninformative representation  
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(Fig. 3a,d). However, in the trained network, the spiking activity  
generated by occluded toluene was attracted over the five 
gamma cycles towards the previously learned toluene represen-
tation, enabling clear identification of the occluded unknown  
(Fig. 3b,d,e). In contrast, if inhibitory plasticity (Fig. 2c,d) was  
suppressed during training, the trained EPL network was unable to 
denoise the MC representation (Fig. 3c,d).

As hypothesized for the biological OB, odour learning in the 
network induces the permanent differentiation of GCs (Fig. 3f) 
that thereby become selective for higher-order feature combi-
nations that are relatively diagnostic of the learned odour38–40  
(Fig. 2b). We tested whether increased allocations of GCs, enabling 
each MC to be inhibited by a broader selection of feature combi-
nations, would improve odour learning and identification under 
noise. We found that increasing the number of undifferentiated 
GCs per column improved the robustness of signal restoration, 
increasing the similarity of the occluded signal to the learned repre-
sentation after five gamma cycles (Fig. 3g). Nevertheless, we limited 
our simulations to five GCs per trained odourant and five gamma 

cycles per sniff to avoid ceiling effects and thereby better reveal the 
variables of greatest interest.

This learning algorithm irreversibly consumes GCs. Each odour 
memory is associated with a distributed population of differentiated 
GCs tuned to its complex diagnostic features. Fully differentiated, 
mature GCs do not undergo further plasticity and hence are pro-
tected from catastrophic interference41,42 (Supplementary Notes). 
The learning of successively presented new odourants, however, 
would be increasingly handicapped by the declining pool of undif-
ferentiated GCs (Fig. 3g). The competition among distinct new 
odourants can be substantially reduced by sparser initial MC → GC 
connectivity and higher numbers of GCs, among other param-
eters38; however, genuine lifelong learning in such a system requires 
a steady source of undifferentiated GCs. Exactly this resource is 
provided to the mammalian olfactory system by constitutive adult 
neurogenesis. We propose that the critical role of adult neurogenesis 
in odour learning26,27,33,34,43 be interpreted in this light.

We then trained the 72-column network sequentially with all ten 
odourants in the dataset4, using a one-shot training procedure for 
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Fig. 3 | Odourant-evoked MC activity patterns are attracted to learned representations. a, Presentation of an occluded instance of toluene to an 
untrained network. Blue dot rasters denote spike times evoked by occluded toluene (impulse noise P = 0.6). The untrained network does not update the 
response to occluded toluene over the five gamma cycles depicted. For comparison, open circle rasters denote the spike times evoked by non-occluded 
toluene. b, Presentation of the same occluded instance of toluene to a plastic network trained on (non-occluded) toluene. The activity profile evoked by 
the occluded sample was attracted to the learned toluene representation over successive gamma cycles. c, Presentation of the same occluded instance of 
toluene to a network trained on non-occluded toluene with excitatory, but not inhibitory, plasticity enabled. The omission of inhibitory plasticity rendered 
the network unable to denoise MC representations during testing. d, The Jaccard similarity44 between the response to occluded toluene and the learned 
representation of toluene systematically increased over five gamma cycles in the trained network (b), but not in the untrained network (a) or the network 
with inhibitory plasticity disabled (c). e, The Jaccard similarity increased reliably over five gamma cycles when averaged over 100 independently generated 
instances of occluded toluene (impulse noise P = 0.6). f, During learning, the number of GCs tuned to toluene increased over the five successive gamma 
cycles of training. g, Mean Jaccard similarity in the fifth gamma cycle as a function of the number of undifferentiated GCs per column. Mean similarity is 
averaged across 100 occluded instances of toluene (impulse noise P = 0.6). Five GCs per column were utilized for all other simulations described herein. 
Error bars denote standard deviation.
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each odour. In each case, the network was trained on one odour 
first, followed by a second odour, then by a third, until all ten odours 
had been learned. Similar results were obtained irrespective of the 
order in which the ten odourants were trained. A set of new, undif-
ferentiated GCs was added to the network after each odour was 
learned, reflecting the effects of adult neurogenesis. Critically, sub-
sequent odour training did not disrupt the memories of previously 
learned odours; that is, the EPL network supports robust online 
learning, and is resistant to catastrophic forgetting. This capac-
ity for online learning is essential for memory formation under  

natural conditions, as well as for continuous device operation in 
the field; in either case, new signals of potential significance may 
be encountered at unpredictable times, and must be incorporated 
non-destructively into an existing knowledge base.

We then tested the algorithm’s capacity to recognize and clas-
sify odourant samples that were strongly occluded by impulse noise, 
reflecting the effects of any number of independent odourous con-
taminants that could mask the odour of interest in uncontrolled 
environments. Following training on all ten odourants, sensor-
evoked activity patterns generated by strongly occluded odour 

a
M

C
 in

de
x 

(a
.u

.)

M
C

 in
de

x 
(a

.u
.)

0 204 8

Occluded toluene, trained network

e

d

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

NaïveToluene
Ammonia

Acetone
Benzene

Methane Trained Trained + NM f

0.2

20

40

60

80

100

%
 C

or
re

ct

0.2

20

40

60

80

Proportion occluded Proportion of GCs primed

Acetaldehyde

Ammonia

Butanol Carbon monoxide

Ethylene

Methanol

Benzene

Acetone

Methane

Toluene

1.0

0.2

0.6

4 5
12 16

1 2 3

Gamma cycle Gamma cycle

1 2 3 4 5

cb

0

0.2

0.4

0.6

0.8

1.0
300

200

100

0
4 5

Gamma cycle 0 0.4 0.6 0.8 1.0 0 0.4 0.6 0.8 1.0
1 2 31 2 3 4 5

Gamma cycle
0 0

%
 C

or
re

ct

Timesteps

S
im

ila
rit

y

G
C

 c
ou

nt

Fig. 4 | Multi-odour learning. a, Spike raster plot depicting attractor dynamics after training the network on all ten odourants. The representation 
generated by a sample of occluded toluene (P = 0.6; black dots) was progressively drawn towards the learned representation of toluene (open blue circles) 
and away from the learned representations of acetone (open red circles) and the other eight odourants (not shown). b, The Jaccard similarity to toluene 
that was evoked by the occluded-toluene stimulus increased over five successive gamma cycles until the stimulus was classified as toluene (similarity 
>0.8). For clarity, only five odourants are depicted. c, The number of toluene-tuned GCs activated by the occluded-toluene stimulus progressively 
increased over five gamma cycles as the MC spiking activity pattern was attracted towards the learned toluene representation. GCs tuned to the other 
nine odourants were negligibly recruited by the evolving stimulus representation. d, Network activity evoked by presentation of occluded instances of each 
of the ten learned odours following one-shot learning. Left: spike raster plots over five gamma cycles (200 timesteps). Right: Jaccard similarity between 
the activity pattern generated by each occluded odourant stimulus and the learned representation of the corresponding odourant. The same network  
can reliably recognize all ten odourants from substantially occluded examples (P = 0.6). e, Mean classification performance across all ten odourants  
under increasing levels of sensory occlusion (100 impulse noise instantiations per odourant per noise level). The abscissa denotes the level of impulse 
noise—that is, the proportion of MC inputs for which the sensory activation level was replaced with a random value. The red curve is the proportion of 
correct classifications by an untrained network. The green curve is the proportion of correct classifications by a network trained on all ten odourants.  
The blue curve is the proportion of correct classifications by a trained network with the aid of a neuromodulation-dependent dynamic state trajectory.  
f, Effects of GC priming on classification performance under extreme occlusion. One hundred independently generated samples of occluded toluene with 
impulse noise P = 0.9 were presented to the fully trained network. The putative effects of priming arising from piriform cortical projections onto bulbar 
GCs were modelled by lowering the spike thresholds of a fraction of toluene-tuned GCs. As the fraction of toluene-tuned GCs so activated was increased, 
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stimuli (impulse noise P = 0.6) were attracted specifically towards 
the learned representation of the corresponding odour (Fig. 4a–c). 
Notably, the same network was able to rapidly identify occluded 
instances of all ten odours within five gamma cycles (Fig. 4d). An 
odour was considered identified when the spatiotemporal pattern of 
its evoked spiking activity exceeded a Jaccard similarity44 of 0.75 to 
one of the network’s learned representations. Performance on this 
dataset under standard conditions was strong up to sample occlu-
sion levels of P = 0.6, after which increased occlusion began to grad-
ually impair classification performance (Fig. 4e).

Neuromodulators such as acetylcholine and noradrenaline gen-
erate powerful effects on stimulus representations and plasticity in 
multiple sensory systems including olfaction. Traditionally, they 
are treated as state variables that may sharpen representations or 
gate learning, or bias a network towards one source of input or 
another45–47. We instead modelled neuromodulatory effects as a 
dynamic search trajectory. Specifically, as the neuromodulator is 
released in response to active olfactory investigation (sampling), the 
local concentration around effector neurons and synapses rises over 
the course of successive sniffs, potentially enabling the most effec-
tive of the transient neuromodulatory states along that trajectory 
to govern the outcome of the stimulus identification process. We 
implemented a gradual reduction in the mean GC spiking threshold 
over the course of five sniffs of a corrupted odour signal, reflecting 
a concomitant increase in neuromodulator efficacy, and used the 
greatest of the five similarity values measured in the last gamma 
cycle within each sniff to classify the test odourant. Importantly, 
under very high noise conditions, each of the five ‘neuromodula-
tory’ states performed best for some of the test odours and noise 
instantiations, indicating that a trajectory across a range of neuro-
modulatory states could yield superior classification performance 
compared with any single state. Indeed, this strategy yielded a sub-
stantial improvement in classification performance at very high 
levels of impulse noise, approximately doubling classification per-
formance at P = 0.8 (Fig. 4e).

In the biological system, OB activity patterns resembling those 
evoked by a specific odour can be evoked by contextual priming that 
is predictive of the arrival of that odour48. We implemented this as a 
priming effect exerted by ascending piriform cortical neurons that 
synaptically excite GCs in the OB49, the mapping between which 
can be learned dynamically50. Specifically, we presented the network 
with odour samples at an extreme level of destructive interference 
(P = 0.9) that largely precluded correct classification under default 
conditions (Fig. 4e). When fractions of the population of GCs nor-
mally activated by the presented odour were primed by lowering 
their spike thresholds, classification performance improved dra-
matically, to a degree corresponding to the fraction of primed GCs 
(Fig. 4f). That is, even a weak prior expectation of an incoming 
odour stimulus suffices to draw an extremely occluded odour signal 
out of the noise and into the attractor.

In addition to occlusion by competing odourants, odour samples 
can vary based on the dynamics of their plumes (Fig. 1c), which 
evolve over time. We therefore tested the algorithm’s ability to rec-
ognize and classify samples of each odourant that were drawn from 
the wind tunnel at different points in time (Fig. 5a,b). Specifically, 
in this paradigm, repeated samples of the same odourant dif-
fered from one another based on evolving odour plume dynamics, 
whereas samples of different odourants differed from one another 
both in plume dynamics and in the distribution of analyte sensitivi-
ties across the sensor array. Following one-shot training on all ten 
odours as described above, the spiking activity generated by odou-
rant test samples was attracted over the five gamma cycles towards 
the corresponding learned representation. Notably, plume dynam-
ics alone constituted a relatively minor source of variance compared 
with impulse noise (Fig. 5c).

We then tested the network on samples incorporating both 
plume dynamics and impulse noise (P = 0.4). Following one-shot 
training on all ten odours, we sampled each odour across widely 
dispersed points in time, and contaminated each sniff with an inde-
pendent instantiation of impulse noise (Fig. 5d,e). Spiking activity 
was again attracted over the five gamma cycles of each sniff towards 
the correct learned representation (Fig. 5f–h). Classification perfor-
mance across levels of impulse noise from P = 0.0 to P = 1.0 (Fig. 5i) 
indicated that the addition of plume-based variability moderately 
reduced network performance (compare to Fig. 4e, green curve). 
Network performance was not affected by the introduction of noise 
correlations over time (Supplementary Fig. 1).

Classification performance
To evaluate the performance of the EPL model, we compared its 
classification performance to the performance of multiple con-
ventional signal processing techniques: a median filter (MF), a 
total variation filter (TVF; both commonly used as impulse noise 
reduction filters51), principal component analysis (PCA; a standard 
preprocessor used in machine olfaction3) and a seven-layer deep 
autoencoder (DAE; Methods). Specifically, following training, we 
averaged the classification performance of each method across 100 
different occluded presentations of each odour, with the occlusion 
level for each sample randomly and uniformly selected from the 
range P = [0.2, 0.8], for a total of 1,000 test samples. Incorrect clas-
sifications and failures to classify both were scored as failures.

The neuromorphic EPL substantially outperformed MF, TVF 
and PCA. To model ‘one sample’ learning on the DAE for compari-
son with one-shot learning on the EPL network, we trained a DAE 
with one sample from each of the ten odourants over 1,000 training 
epochs per odourant, with the odourants intercalated in presenta-
tion. The EPL network substantially outperformed the DAE under 
these conditions, in which the training set contained no information 
about the distribution of error that would arise during testing owing 
to impulse noise (Fig. 6a). To improve DAE performance, we then 

Fig. 5 | Odour learning with plume dynamics. a, Ten sniffs of toluene drawn from randomly selected timepoints within the dataset illustrate sampling 
variance arising from plume dynamics. Ordinate denotes MC index, ordered according to sensor locations across the wind tunnel. b, Higher-resolution 
depictions of sniffs 1, 4, 7 and 10 from a. c, Jaccard similarities between the learned representation of toluene and the activity patterns generated by 
plume-varying toluene stimuli across the five gamma cycles of each of the four sniffs depicted in b. d, Ten sniffs of toluene drawn from randomly selected 
timepoints within the dataset and also occluded with impulse noise (P = 0.4). e, Higher-resolution depictions of sniffs 1, 4, 7, and 10 from d. f, Jaccard 
similarities between the learned representation of toluene and the activity patterns generated by plume-varying, occluded toluene stimuli across the five 
gamma cycles of each of the four sniffs depicted in e. g, Network activity evoked by presentation of plume-varying and occluded instances of each of the 
ten learned odours following one-shot learning. Left: spike raster plots over five gamma cycles. Right: Jaccard similarities between the activity pattern 
generated by each occluded odourant stimulus and the learned representation of the corresponding odourant. The same network reliably recognized all 
ten odourants from plume-varying and occluded examples. h, The Jaccard similarity to toluene that was evoked by the occluded, plume-varying toluene 
stimulus increased over five successive gamma cycles until the stimulus was classified as toluene (similarity >0.8). For clarity, only five odourants are 
depicted. i, Mean classification performance across all ten odourants, with plume dynamics, under increasing levels of sensory occlusion (100 impulse 
noise instantiations per odourant per noise level). The abscissa denotes the level of impulse noise. The green curve shows the proportion of correct 
classifications by a network trained on all ten odourants.
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trained it with 500 to 7,000 samples of each of the ten odourants, 
with each sample independently occluded by impulse noise ran-
domly and uniformly selected from the range P = [0.2, 0.8]. Under 
this training regime, the deep network required 3,000 samples per 

odourant, including the attendant information regarding the dis-
tribution of testing variance, to achieve the classification perfor-
mance that the EPL model achieved with one sample per odourant.  
With further training, DAE performance exceeded that of the EPL 

e

a

d

f

c

b

4 5

1.0

0.5

0

1.0

0.5

S
im

ila
rit

y
M

C
 in

de
x

(a
.u

.)
S

im
ila

rit
y

0

4 5

4 5

1 2 3

Gamma cycle

Gamma cycle

1 2 3

Gamma cycle

Gamma cycle
1 2 3

1 2 3 4 5

1 4 7 10

1 4 7 10

Acetaldehyde

Butanol Carbon monoxide

Ammonia Benzene

Acetone

Ethylene Methane

Methanol Toluene

1.0

0.2
0.6

4 5 51 2 3
Gamma cycle Gamma cycle

1 2 3 4

0

Proportion occluded

%
 C

or
re

ct

20

40

60

80

100

0
0.2 0.4 0.6 0.8 1.0

1 2 3 4 5

1.0

Toluene
Acetaldehyde
Ammonia
Benzene
Methanol

0.8

0.6

0.4

0.2

0

S
im

ila
rit

y

Gamma cycle

g h

i

Nature Machine Intelligence | VOL 2 | March 2020 | 181–191 | www.nature.com/natmachintell 187

http://www.nature.com/natmachintell


Articles NATure MAchIne InTeLLIgence

network (Fig. 6b). We then tested the online learning capacities of 
the two networks, in which the presentations of different odourants 
during training were sequential rather than uniformly interspersed. 
After training both networks to recognize toluene using the meth-
ods of Fig. 6b, both the EPL and the DAE exhibited high classifica-
tion performance. However, after subsequent training to recognize 
acetone, the DAE lost its ability to recognize toluene, whereas the 
EPL network recognized both odours with high fidelity (Fig. 6c,d). 
Susceptibility to catastrophic forgetting is a well-established limita-
tion of deep networks, though some customized networks recently 
have shown improvements in their online (continual) learning 
capabilities that reflect some of the strategies of the EPL network, 
such as the selective reduction of plasticity in well-trained network 
elements42.

These results indicate that the EPL network ultimately serves a 
different purpose than techniques that require intensive training 
with explicit models of expected variance to achieve optimal per-
formance. The EPL network is competitive with these algorithms 
overall, but excels at rapid, online learning with the capacity to 
generalize beyond experience in novel environments with unpre-
dictable sources of variance. In contrast, the DAE evaluated here 
performs best when it is trained to convergence on data drawn from 
the distribution of expected variance; under these conditions, its 
performance exceeds that of the present EPL network. EPL network 
instantiations are thereby likely to be favoured in embedded systems 
intended for deployment in the wild, where rapid training, energy 
efficiency, robustness to unpredictable variance and the ability to 
update training with new exemplars are at a premium.

Summary
Neuromorphic computing shows great promise, but currently suf-
fers from a paucity of useful algorithms. Seeking inspiration from 
the circuit-level organization of biological neural systems, with their 
radically different computational strategies, provides a key opportu-
nity to develop algorithmic approaches that might not otherwise be 
considered. We demonstrate that a simplified network model, based 
on the architecture and dynamics of the mammalian olfactory 
bulb14 (Supplementary Discussion) and instantiated in the Loihi 
neuromorphic system1, can support rapid online learning and pow-
erful signal restoration of odour inputs that are strongly occluded 
by contaminants. These results evince powerful computational fea-
tures of the early olfactory network that, together with mechanistic 
models and experimental data, present a coherent general frame-
work for understanding mammalian olfaction as well as improving 
the performance of artificial chemosensory systems. Moreover, this 
framework is equally applicable to other steady-state signal iden-
tification problems in which higher-dimensional patterns without 
meaningful lower-dimensional internal structure are embedded in 
highly interfering backgrounds.

Methods
Dataset and odourant sampling. Sensory input to the model was generated from 
the ‘Gas sensor arrays in open sampling settings’ dataset published by Vergara 
and colleagues4 and available from the UCI Machine Learning Repository (see 
‘Data availability’). The dataset comprises the responses of 72 metal oxide-based 
chemical sensors distributed across a wind tunnel. There are six different sensor 
mounting locations in the tunnel, three different settings of the tunnel’s wind speed 
and three different settings of the sensor array’s heater voltage. In our present 
study, we consider the recordings made at sensor location ‘L4’ (near the mid-point 
of the tunnel), with the wind speed set to 0.21 m s−1 and the heater voltage set to 
500 V. The tunnel itself was 1.2 m wide by 0.4 m tall by 2.5 m long, with the sensors 
deployed in nine modules, each with eight different sensors, distributed across 
the full 1.2 m width of the tunnel at a location 1.18 m from the inlet (Fig. 1c). The 
nine modules were identical to one another. To maintain the generality of the 
algorithm rather than optimize it for this particular dataset, we here sampled the 
72 sensors naïvely, without in any way cross-referencing inputs from the nominally 
identical sensors replicated across the nine modules, or attempting to mitigate the 
plume-based variance across these sensors. The turbulent plume shown in Fig. 1c is 
illustrative only; distribution maps of local concentrations in the plume, along with 
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Fig. 6 | Performance evaluation. a, Classification performance of the EPL 
network compared with four other signal processing techniques. Raw, 
classification of unprocessed sensor signals; MF, median filter; TVF, total 
variation filter; PCA, principal component analysis; DAE, a seven-layer deep 
autoencoder; EPL, the neuromorphic EPL model. Each of the 10 odourants 
was presented with 100 independent instantiations of impulse noise, 
yielding 1,000 total test samples. b, The performance of the DAE improved 
when it was explicitly trained to map a variety of occluded instances of 
each odour to a common representation. To achieve performance superior 
to the one-shot-trained EPL network, the DAE required 3,000 occluded 
training samples per odourant. c, Online learning. After training naïve EPL 
and DAE networks with toluene (To), both recognized toluene with 100% 
accuracy. After then training the same network with acetone (Ac), the 
DAE learned to recognize acetone with 100% accuracy, but was no longer 
able to recognize toluene (catastrophic forgetting). In contrast, the EPL 
network retained the ability to recognize toluene after subsequent training 
on acetone. d, Gradual loss of the toluene representation in the DAE during 
subsequent training with acetone. The ordinate denotes the similarity of 
the toluene-evoked activity pattern to the original toluene representation 
as a function of the number of training epochs for acetone. Values are the 
means of 100 test samples. Inset: similarity between the toluene-evoked 
activity pattern and the original toluene representation in the EPL network 
before training with acetone (left) and after the completion of acetone 
training (right). e, Similarity between the toluene-evoked activity pattern 
and the original toluene representation as the EPL network is sequentially 
trained on all ten odourants of the dataset. Values are the means of 100 
test samples. f, The execution time to solution is not notably affected 
as the EPL network size is expanded, reflecting the fine granularity of 
parallelism of the Loihi architecture. In the present implementation, one 
Loihi core corresponds to one OB column. g, The total energy consumed 
increases only modestly as the EPL network size is expanded.
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full details of the wind tunnel configuration, are provided in the publication first 
presenting the dataset4.

Ten different odourants were delivered in the gas phase to the sensor array: 
acetone, acetaldehyde, ammonia, butanol, ethylene, methane, methanol, carbon 
monoxide, benzene and toluene4. For every tunnel configuration, each of these 
odourants was presented 10–20 times, and each presentation lasted for 180 s. In our 
present study, we consider one of these 180 s plumes (chosen at random) for each 
odourant.

We discretized each sensor’s range of possible responses into 16 levels of 
activation, corresponding to 16 time bins of the permissive epoch of each gamma 
cycle. The discretized sensor values were composed into a 72-dimensional sensor 
activity vector, which then was sparsened by setting the smallest 50% of the values 
to zero. Accordingly, each odourant sample (‘sniff ’) presented to the EPL network 
comprised a discrete 72-element sensor vector drawn from a single point in time 
and presented as steady state. The training set underpinning one-shot learning 
was based on single-timepoint samples drawn from the 90 s timepoint in each 
of the 180-s-long odourant presentations. Test sets for the impulse-noise-only 
studies (Figs. 3 and 4) comprised these same timepoints, each altered by 100 
different instantiations of impulse noise. For the plume-variance studies (Fig. 
5), test samples for each odourant were drawn from different timepoints in the 
corresponding plume (specifically, across the range 30–180 s after odourant 
presentation, at 5 s intervals) and were presented to the network both with and 
without added impulse noise.

The OB EPL model therefore was instantiated with 72 columns, such that 
each column received afferent excitation proportional to the activation level of 
one sensor. Because we here present the network in its simplest form, we treated 
the 72 columns as independent inputs, without crafting the algorithm to combine 
the responses of duplicate sensor types, to weight the centrally located sensors 
more strongly, or to perform any other dataset-specific modifications that might 
improve performance. Each model OB column comprised one principal neuron 
(MC) and initially five GC interneurons that were presynaptic to that MC (for a 
total of 360 GCs across all columns), though the number of GCs per column rose 
as high as 50 in the most highly trained models described herein. MCs projected 
axons globally across all columns and formed excitatory synapses onto GCs with 
a uniform probability of 0.2 (20%). Each GC, in turn, synaptically inhibited the 
MC within its column with a probability of unity (100%). GCs did not inhibit MCs 
from other columns, though this constraint can be relaxed without affecting overall 
network function. To reflect the mapping of the algorithm to the physical layout of 
the Loihi chip, we consider an MC and its co-columnar GCs to be spatially local to 
one another. However, there is no computational basis for the physical locations of 
neurons in the model; an OB column is simply ‘an MC plus those inputs that can 
affect its activity’. MC and GC model implementation details are presented in the 
Supplementary Methods.

Intrinsic gamma and theta dynamics. In the biological system, the profile of spike 
times across MCs is proposed to reflect a phase precedence code with respect to 
the emergent gamma-band field potential oscillations generated in the olfactory 
system. Spike timing-based coding metrics are known to offer considerable speed 
and efficiency advantages52–56; however, they require computational infrastructure 
in the brain to realize these benefits. Fast oscillations in the local field potential 
are indicative of broad activity coherence across a synaptically coordinated 
ensemble of neurons, and thereby serve as temporal reference frames within which 
spike times in these neurons can be regulated and decoded. Accordingly, these 
reference frames are essential components of the biological system’s computational 
capacities.

In the OB, gamma oscillations emerge from interactions of the subthreshold 
oscillations of MCs with the network dynamics of the EPL (PRING dynamics14). 
For present purposes, the importance of these oscillations was twofold: (1) MC 
spike phases with respect to the gamma-band oscillations serve as the model’s 
most informative output, and (2) by considering each oscillation as embedding 
a distinct, interpretable representation, repeated oscillations enable the network 
to iteratively approach a learned state based on stationary sensory input. Notably, 
in vivo, piriform cortical pyramidal neurons are selectively activated by convergent, 
synchronous MC spikes57, and established neural learning rules are in principle 
capable of reading such a coincidence-based metric58. Because MC spike times 
can be altered on the gamma timescale by synaptic inhibition from GCs, and 
their spike times in turn alter the responsivity of GCs, these lateral inhibitory 
interactions can iteratively modify the information exported from the OB. In the 
neuromorphic EPL, each MC periodically switched between two states to establish 
the basic gamma oscillatory cycle. These two states were an active state in which 
the MC integrated sensory input and generated spikes (permissive epoch) and an 
inactive state in which the excitation level of the MC was held at zero, preventing 
sensory integration and spike generation (inhibitory epoch; Fig. 1d). The effects 
of the plastic lateral inhibitory weights from GCs were applied on top of this 
temporal framework (Supplementary Methods). The correspondence with real 
time is arbitrary and hence is measured in timesteps (ts) directly; that said, as Loihi 
operates at about 100 kHz, each timestep corresponds to about 10 μs. In the present 
implementation, the permissive epoch comprised 16 ts and the inhibitory epoch 
24 ts, for a total of 40 ts per gamma cycle. Notably, the duration of the permissive 

epoch directly corresponds to the number of discrete levels of sensory input that 
can be encoded by our spike timing-based metric; it can be expanded arbitrarily at 
the cost of greater time and energy expenditures.

A second, slower, sampling cycle was used to regulate odour sampling. This 
cycle is analogous to theta-band oscillations in the OB, which are driven primarily 
by respiratory sampling (sniffing) behaviours but also by coupling with other 
brain structures during certain behavioural epochs. Each sampling cycle (‘sniff ’) 
consisted of a single sample and steady-state presentation of sensory input 
across five gamma cycles of network activity. The number of gamma cycles per 
sampling cycle can be arbitrarily determined to regulate how much sequential, 
iterative processing is applied to each sensory sample, but was held at five for all 
experiments herein.

Importantly, these differences between the slower sampling timescale and the 
faster processing timescale can be leveraged to implement ‘continuous’ online 
sampling, in which each sample can be processed using multiple computational 
iterations before digitizing the next sample. In the present implementation, for 
example, the Vergara et al. dataset sampled odourants at 100 Hz—one sample every 
10 ms. On Loihi, operating at 100 kHz, the 200 ts (five gamma cycles) used for the 
processing of a single sniff require a total of around 2 ms. As this is five times faster 
than the sampling rate of the sensors, there would be no update to sensor state 
during the time required for five cycles of processing. Examples of this algorithm 
operating in ‘continuous’ mode are presented in Supplementary Fig. 1.

Testing procedures. After training, we tested the network’s performance on 
recognizing learned odourants in the presence of destructive interference 
from unpredictable sources of olfactory occlusion (impulse noise), alone or in 
combination with variance arising from sampling plume dynamics at different 
timepoints. All testing was performed with network plasticity disabled.

The responses of primary olfactory receptors to a given odourant of interest 
can be radically altered by the concomitant presence of competing background 
odourants that strongly activate or block some of the same receptors as the 
odourant of interest, greatly disrupting the ratiometric activation pattern across 
receptors on which odour recognition depends. We modelled this occlusion as 
destructive impulse noise. Specifically, an occluded test sample was generated by 
choosing a fraction P of the 72 elements of a sensor activity vector and replacing 
them each with random values drawn uniformly from the sensors’ operating range 
(integer values from 0 to 15). When multiple occluded test samples were generated 
to measure average performance, both the identities of the occluded elements 
and the random values to which they were set were redrawn from their respective 
distributions.

Odour plume dynamics comprise a second source of stimulus variance 
encountered under natural conditions. To test network performance across this 
variance, we drew test samples from different timepoints within the odour plumes. 
Specifically we drew 30 samples per plume at 5 s intervals between 30 s and 180 s 
within the 180 s datastreams. After one-shot training with a single sample, we 
tested network performance on the other samples, with and without the addition of 
impulse noise (Fig. 5).

While the present study focuses on one-shot learning, the network can also be 
configured for few-shot learning, in which it gradually adapts to the underlying 
statistics of training samples. In this configuration, the network learns robust 
representations even when the training samples themselves are corrupted by 
impulse noise. We illustrate this effect in Supplementary Fig. 2.

Sample classification. The pattern of MC spikes in each successive gamma 
cycle was recorded as a set of spikes, with each spike defined by the identity of 
the active MC and the spike latency with respect to the onset of that permissive 
epoch. Accordingly, five successive sets of spikes were recorded for each sample 
‘sniff ’. When an impulse noise-occluded sample was presented to the network, the 
similarities were computed between each of the five representations evoked by the 
unknown and each of the network’s learned odour representations. In descriptive 
figures (but not for comparisons with other methods), the similarity between two 
representations was measured with the Jaccard index, defined as the number of 
spikes in the intersection of two representations, divided by the number of spikes 
in their union44. Specifically, the permissive epoch of a gamma cycle included 16 
discrete timesteps in which MCs could spike; these 16 bins were used for Jaccard 
calculations. Test samples were classified as one of the network’s known odourants 
if the similarity exceeded a threshold of 0.75 in the fifth (final) gamma cycle. If 
similarities to multiple learned odourants crossed the threshold, the odourant 
exhibiting the greatest similarity value across the five gamma cycles was picked as 
the classification result. If none of the similarity values crossed the threshold within 
five gamma cycles, the odourant was classified as unknown. This combination of 
nearest-neighboor classification and thresholding enabled the network to present 
‘none of the above’ as a legitimate outcome. Summary figures each consist of 
averages across 100 independent instantiations of impulse noise, and/or averages 
across 30 different test samples drawn from different timepoints in the datastream 
(without or with added impulse noise), for each odour in the training set.

Benchmarks. We first compared the classification performance of the EPL network 
to three conventional signal processing techniques: MF, TVF and PCA (Fig. 6a)3,51. 
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The MF and TVF are filters commonly used in signal processing for reducing 
impulse noise, while PCA is a standard preprocessor used in machine olfaction 
applications3. The MF used a window size of 5, and was implemented with the 
Python signal processing library scipy.signal. The TVF used a regularization 
parameter equal to 0.5, and was implemented using the Python image processing 
library scikit-image. PCA was implemented using the Python machine learning 
library scikit-learn; data were projected onto the top five components.

Corrupted input signals also can be denoised by training an autoencoder, a 
modern rendition of autoassociative networks59,60. We therefore compared the 
performance of the EPL network to a seven-layer deep autoencoder constructed 
using the Python deep learning library Keras. The seven layers consisted of an 
input layer of 72 units, followed by five hidden layers of 720 units each and an 
output layer of 72 units. This resulted in a network of 3,744 units, identical to 
the number in the EPL model when trained with ten odours. The network was 
fully connected between layers, and the activity of each unit in the hidden layers 
was L1 regularized. The network was trained with iterative gradient descent 
until convergence using the Adadelta optimizer with a mean absolute error loss 
function. Its training set consisted of 7,000 examples per odourant class.  
For the same training set, the performance of this seven-layer autoencoder 
exceeded that of shallower networks (six-, five-, four- and three-layer  
networks were tested).

For direct comparison, the outputs of all of these methods, including that of the 
EPL network, were presented to the same nearest-neighbour classifier for sample 
classification according to a Manhattan distance metric. Specifically, for each of 
the techniques, the output was read as a 72-dimensional vector and normalized 
such that their elements summed up to a value of unity. (In the case of the EPL 
network, the spiking output in each gamma cycle was read out as a 72-dimensional 
rank-order vector and normalized so that the elements summed to unity). The 
similarity between any two such vectors was measured as (1/(1 + d)), where d is 
the Manhattan distance between the two vectors. Classification performance was 
measured by computing this similarity between the output of training data samples 
and those of test data samples. A test data sample was classified according to the 
identity of the training data sample to which it was most similar, provided that this 
similarity value exceeded a threshold of 0.75 (thresholding enabled the inclusion of 
a ‘none of the above’ outcome).

We trained the DAE in three different ways for comparison with EPL 
network performance. First, the DAE was trained using the same ten non-
occluded odour samples that were used to train the EPL model. These ten 
samples underwent 1,000 training epochs to ensure training convergence. This 
method assesses DAE performance on ‘one sample’ learning, for comparison 
with the one-sample/one-trial learning of the EPL network (Fig. 6a). Second, 
we trained the DAE on multiple impulse noise-occluded samples, to maximize 
its performance. Specifically, we trained the DAE on 500 to 7,000 training 
samples, where each sample comprised an independently occluded instance 
of each of the ten odourants. Each training set was presented for 25 training 
epochs to ensure convergence. The occlusion levels for each training sample 
were drawn from the same distribution as the test samples, being randomly 
and uniformly selected from the range P = [0.2, 0.8]. With this procedure, we 
show that the DAE requires 3,000 training samples per odourant to achieve the 
classification performance that the EPL model achieved with 1 training sample 
per odourant (Fig. 6c); that is, the EPL model is 3,000 times more data efficient 
than the DAE. Third, we trained the DAE and EPL models first on one odourant 
(toluene) and then, subsequently, on a second odourant (acetone) to compare 
the models’ sequential online learning capabilities. After training on toluene, 
the DAE classified test presentations of toluene with high fidelity (Fig. 6c, left). 
However, over the course of acetone training, the similarity between test samples 
of toluene and the learned representation of toluene progressively declined 
(Fig. 6d), to the point that the DAE network became unable to correctly classify 
toluene (Fig. 6c, right; see ref. 42 for strategies to improve the sequential learning 
performance of deep networks). In contrast, training the EPL network with 
acetone exhibited no interference with the pre-existing toluene representation 
(Fig. 6d, inset). The similarity between test samples of toluene and the learned 
representation of toluene was not affected as the EPL learned all of the ten 
odourants in sequence (Fig. 6e).

Data availability
The Vergara et al. gas sensor dataset4 is freely available from the UCI Machine 
Learning database (http://archive.ics.uci.edu/ml/datasets/gas+sensor+arrays+in+
open+sampling+settings).

Code availability
A software version of the model reproducing the primary results of Figs. 
3–5 is freely available from the ModelDB public archive (http://modeldb.yale.
edu/261864). The Loihi source code is freely available from Github (https://github.
com/intel-nrc-ecosystem/models/tree/master/official/epl).
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SUPPLEMENTARY METHODS 

Mitral cell implementation 

 Each MC was modeled by two compartments – an apical dendrite (AD) compartment that 
integrated sensor input and generated “spike initiation” events when an activation threshold was 
crossed, and a soma compartment that was excited by spike initiation events in the AD 
compartment and synaptically inhibited by spikes evoked in cocolumnar GCs.  The soma 
compartment propagated the AD-initiated spike as an MC action potential after release from GC 
inhibition.  Accordingly, stronger sensory inputs initiated earlier (phase-leading) spikes in MCs, 
but the propagation of these spikes could be delayed by inhibition arising from presynaptic GCs.  
Distinguishing between these two MC compartments facilitated management of the two input 
sources and their different coding metrics, and reflected the biophysical segregation between the 
mass-action excitation of MC dendritic arbors and the intrinsic regulation of MC spike timing 
governed by the gamma-band oscillatory dynamics of the OB external plexiform layer 1. 

 Sensor activation levels were delivered to the AD compartment of the corresponding column, 
which integrated the input during each permissive epoch of gamma.  If and when the integrated 
excitation exceeded threshold, a spike initiation event was generated and communicated to the 
soma compartment.  Stronger inputs resulted in more rapid integration and correspondingly 
earlier event times.  After generating an event, the AD was not permitted to initiate another for 
the duration of that permissive epoch.   

 A spike initiation event in the AD generated a unit level of excitation (+1) in the soma 
compartment for the remainder of the permissive epoch.  This excitation state caused the MC 
soma to propagate the spike as soon as it was sufficiently free of lateral inhibition received from 
its presynaptic GCs.  Accordingly, the main effect of GC synaptic inhibition was to modulate 
MC spike times with respect to the gamma cycle.  The resulting MC spikes were delivered to the 
classifier as network output, and also were delivered to its postsynaptic GCs.   

 During the first gamma cycle following odour presentation, when GC inhibition was not yet 
active, the soma immediately propagated the MC spike initiated in the AD.  After propagating a 
spike, the soma was not permitted to spike again for the duration of the permissive epoch.  At the 
end of the permissive epoch, both the AD and soma compartments were reset to zero for the 
duration of the inhibitory epoch.   

 

Granule cell implementation 

 GCs were modeled as single-compartment neurons, 

𝑉 ൌ  ∑ 𝑤௞𝑠௞௞             (1) 

in which V indicates the excitation level of the GC, wk represents the excitatory synaptic weight 
from a presynaptic MC soma k, and k was summed over all presynaptic MCs. The boolean term 



 

 
 

sk denotes a spike at the k-th presynaptic MC soma; sk equals 0 at all times except for the d-th 
timestep following a spike in the k-th MC soma, when it was set to 1.  Accordingly, d denotes a 
delay in the receipt of synaptic excitation by a GC following an MC spike. This delay d was 
randomly determined, synapse-specific, and stable (i.e., not plastic); it reflects heterogeneities in 
spike propagation delays in the biological system and served to delay GC excitation such that 
GC spikes were evoked within the inhibitory epoch of gamma.    

 A spike in an MC soma k that was presynaptic to a given GC excited that GC in proportion to 
its synaptic weight wk. Once GC excitation rose above a threshold θGC, the GC generated a spike 
and reset its excitation level to zero. Following a spike, the GC was not permitted to spike again 
for 20 timesteps, ensuring that only one spike could be initiated in a given GC per gamma cycle.  
In general, convergent excitation from multiple MCs was required for GC spike initiation.   

 

Excitatory synaptic plasticity 

 The weights of MC-to-GC synapses were initialized to a value of we.  Following an 
asymmetric, additive spike timing-dependent plasticity rule, these synaptic weights were 
modified during training following a spike in the postsynaptic GC.  Specifically, synapses in 
which the presynaptic MC spike preceded the postsynaptic GC spike by 1 timestep were 
potentiated by a constant value of δp whereas all other synapses were depressed by a constant 
value of δd.  In the present study, we set δp to 0.05we and δd to 0.2we.  GC spiking thresholds 
were set to 6we.  

 The overall effect of this rule was to develop sparse and selective higher-order receptive 
fields for each GC, a process termed differentiation. Specifically, repeated coincidences of the 
same MC spikes resulted in repeated potentiation of the corresponding synapses, whereas 
synapses of other MCs underwent repeated depression.  Individual excitatory synaptic weights 
were capped at a value of 1.25we, ensuring that the spiking of differentiated GCs remained 
sensitive to coincident activity in a particular ensemble of MCs, the number of which constituted 
the order of the GC receptive field.  By this process, odour learning transformed the relatively 
broad initial receptive field of a GC into a highly selective one of order M. These higher-order 
receptive fields reflected correlations between components of individual sensor vectors – i.e., the 
higher-order signatures of learned odours. Differentiated GCs thereby developed selectivity for 
particular odour signatures and became unresponsive to other sensory input combinations.  
While in principle this GC output can be used directly for classification purposes 2, 3, the present 
algorithm instead deploys it to denoise the spike timing-based MC representation.  Because there 
are many fewer MCs than GCs, there is a corresponding reduction in bandwidth and energy 
consumption by using MCs to communicate the representation for classification or further 
processing.     

 

 



 

 
 

Adult neurogenesis 

 The process of GC differentiation permanently depleted the pool of interneurons available for 
recruitment into new odour representations. To avoid a decline in performance as the numbers of 
odours learned by the network increased, we periodically added new, undifferentiated GC 
interneurons to the network on a timescale slower than that of the synaptic plasticity rules – an 
adaptive network expansion process directly analogous to adult neurogenesis in olfactory bulb 4-

8.  Specifically, the network was initialized with five GCs per column, as described above.  After 
the learning of each new odour, an additional set of five undifferentiated GCs was configured in 
every column. As with the initial network elements, every MC in the network formed excitatory 
synapses onto new GCs with a probability of 0.2 (20%), and the new GCs all formed inhibitory 
synapses onto their cocolumnar MCs with initial inhibitory weights of zero.  

 

Inhibitory synaptic plasticity  

 In the neuromorphic model, inhibitory synapses from presynaptic GCs onto their cocolumnar 
MC somata exhibited three functional states. The default state of the synapse was an inactive 
state I, which exerted no effect on the MC (i.e., equal to 0).  When a spike was evoked in the GC, 
the synapse transitioned into an inhibitory blocking state B; this state was maintained for a 
period of time ΔB that was determined by learning. While in this state, the synapse maintained a 
unit level of inhibition (equal to –1) in the postsynaptic MC soma that inhibited somatic spike 
propagation. The blocking period ΔB therefore governed MC spike latency, and corresponded 
functionally to the inhibitory synaptic weight.  At the end of the blocking state, the synapse 
transitioned to a release state R for 1 timestep, during which it generated a unit level of excitation 
(equal to +1) in the postsynaptic MC soma.  The synapse then resumed the inactive state. An MC 
soma propagated a spike when the sum of the excitation and inhibition generated by its apical 
dendrite and by the synapses of all of its presynaptic GCs was positive.  After spiking once, the 
MC soma was not permitted to spike again for the duration of that gamma cycle.   

 All inhibitory synaptic weights in new GCs were initialized to ΔB = 0 ts.  During training, 
additionally, the effects of inhibition on MC somata were suppressed.  If an MC AD initiated a 
spike within the permissive epoch immediately following a cocolumnar GC spike (in the 
previous inhibitory epoch), the blocking period ΔB imposed by that GC onto the soma of that MC 
was modified based on the learning rule  

δ௕ ൌ  𝜂ሺ𝑡஺஽ െ  𝑡ோሻ                       (2)  

where δb is the change in the blocking period ΔB (inhibitory synaptic weight), tAD is the time of 
the MC spike initiation event in the AD, tR is the time at which the inhibitory synapse switched 
from the blocking state to the release state, and η was the learning rate (set to 1.0 in the one-shot 
learning studies presented here). Consequently, the synaptic blocking period ΔB was modified 
during training (rounding up fractions) until the release of inhibition from that synapse was 
aligned with the spike initiation event in the MC AD (Figure 2c).  If the GC spike was not 



 

 
 

followed by an MC spike initiation event during the following permissive epoch, the inhibitory 
weight ΔB of that synapse grew until that MC was inhibited for the entire gamma cycle.  Inputs 
from multiple local GCs onto a common MC were applied and modified independently.   

 In total, this inhibitory synaptic plasticity rule enabled the EPL network to learn the timing 
relationships between GC spikes and cocolumnar MC spikes associated with a given odour 
stimulus, thereby training the inhibitory weight matrix to construct a fixed-point attractor around 
the odour representation being learned.  This served to counteract the consequences of 
destructive interference in odour stimuli presented during testing.  Importantly, this plasticity 
rule effectively learned the specific ratiometric patterns of activation levels among MCs that 
characterized particular odours; consequently, two odours that activated the same population of 
MCs, but at different relative levels, could be readily distinguished.    

 
Implementation on the Loihi neuromorphic system  

 Neuromorphic systems are custom integrated circuits that model biological neural 
computations, typically with orders of magnitude greater speed and energy efficiency than 
general-purpose computers. These systems enable the deployment of neural algorithms in edge 
devices, such as chemosensory signal analyzers, in which real-time operation, low power 
consumption, environmental robustness, and compact size are critical operational metrics. Loihi, 
a neuromorphic processor developed for research at Intel Labs, advances the state of the art in 
neuromorphic systems with innovations in architecture and circuit design, and a feature set that 
supports a wide variety of neural computations 9.  Below we provide an overview of the Loihi 
system and our network implementation thereon.  

 Loihi is fabricated in Intel’s 14-nm FinFET process and realizes a total of 2.07 billion 
transistors over a manycore mesh.  Each Loihi chip contains a total of 128 neuromorphic cores, 
along with three embedded Lakemont x86 processors and external communication interfaces that 
enable the neuromorphic mesh to be extended across many interlinked Loihi chips (Figure 1b). 
Each neuromorphic core comprises leaky-integrate-and-fire compute units that integrate filtered 
spike trains from a configurable set of presynaptic units and generate spikes when a threshold 
level of excitation is crossed. Postsynaptic spikes then are communicated to a configurable set of 
target units anywhere within the mesh. A variety of features can be configured in a core, 
including multicompartment interactions, spike timing-dependent learning rules, axonal 
conduction delays, and neuromodulatory effects. All signals in the system are digital, and 
networks operate as discrete-time dynamical systems.  

 We configured each column of our model within one neuromorphic core, thereby using a 
total of 72 cores on a single chip. Cocolumnar synaptic interactions took place within a core, 
whereas the global projections of MC somatic spikes were routed via the intercore routing mesh. 
The configured network utilized 12.5% of the available neural resources per core and 6% of the 
available synaptic memory.  



 

 
 

 Completing one inference cycle (sniff; 5 gamma cycles; 200 timesteps) of the 72-core 
network required 2.75 ms and consumed 0.43 mJ, of which 0.12 mJ is dynamic energy. 
Critically, the time required to solution was not significantly affected by the scale of the problem 
(Figure 6f), owing to the Loihi architecture’s fine-grained parallelism. This scalability highlights 
a key advantage of neuromorphic hardware for application to computational neuroscience and 
machine olfaction.  Energy consumption also scaled only modestly as network size increased 
(Figure 6g), owing to the colocalization of memory and compute and the use of sparse (spiking) 
communication, which minimize the movement of data.  Using multichip Loihi systems, we 
envision scaling up the present implementation to hundreds of columns and hundreds of 
thousands of interneurons, as well as to integrate circuit models of the glomerular layer 10 and the 
piriform cortex with the current EPL network of olfactory bulb. 

 
  



 

 
 

SUPPLEMENTARY NOTES 

Advantages of a spike timing metric 

 This inhibitory plasticity rule enables the EPL network to learn the timing relationships 
among MC spikes in response to a given odour stimulus. Consequently, because relative spike 
times signify MC activation levels, the network effectively learns the specific ratiometric pattern 
of activation levels among MCs that characterizes a given odour.  This spatiotemporal basis for 
odour representation enables a substantially greater memory capacity than would be possible 
with spatial patterning alone; for example, two odours that activate the same population of MCs, 
but at different relative levels, can readily be distinguished by the trained network.  Moreover, it 
consumes fewer spikes than rate-coding metrics, and can be read out much more quickly because 
it does not need to integrate multiple spikes over time to estimate rate.  Finally, this spike timing-
based metric for relational encoding, coupled with odour-specific profiles of feedback inhibition, 
renders these memory states as attractors, enabling incoming stimuli to be correctly classified by 
the trained network despite surprisingly high degrees of destructive interference.  The trained 
EPL network thus comprises a spike-timing based autoassociator, embedding an arbitrary 
number of content-addressable memories.  

 

Adaptive network plasticity via adult neurogenesis 

 In the neuromorphic algorithm, constitutive adult neurogenesis was simulated by configuring 
a new set of five GCs in every column after each successively learned odour stimulus 
(Supplementary Methods).  Hence, training a 72-column network on ten odours yielded a 
network with 3600 differentiated GCs.  New GCs each received initial synaptic connections from 
a randomly selected 20% of the MCs across the network, and delivered inhibition onto their 
cocolumnar MC.   

 

  



 

 
 

SUPPLEMENTARY DISCUSSION 

 The EPL algorithm, while derived directly from computational features of the mammalian 
olfactory system, essentially comprises a spike timing-based variant of a Hopfield 
autoassociative network 11, exhibiting autoassociative attractor dynamics over sequential gamma-
breadth packets of spiking activity. Since their conception, Hopfield networks and their variants 
have been applied to a range of computational problems, including sparse coding 12, 
combinatorial optimization 13, path integration 14, and oculomotor control 15.  Because these 
studies typically model neural activity as continuous-valued functions (approximating a spike 
rate), they have not overlapped significantly with contemporary research investigating spike-
timing-based mechanisms of neural coding and computation 1, 16-21 – mechanisms that are 
leveraged in contemporary neuromorphic systems to achieve massive parallelism and 
unprecedented energy efficiency 9, 22.  The EPL algorithm combines insights from these two 
bodies of work, instantiating autoassociative attractor dynamics within a spike timing 
framework.  By doing so, it proposes novel functional roles for spike timing-dependent synaptic 
plasticity, packet-based neural communications, active neuromodulation, and adult neurogenesis, 
all instantiated within a scalable and energy-efficient neuromorphic platform (Figure 6f-g).    

 Contemporary artificial olfaction research often emphasizes the development of sensors and 
sensor arrays 23.  Associated work on the processing of electronic nose sensor data incorporates 
both established machine learning algorithms and novel analytical approaches 24-26, as well as 
optimizations for sensory sampling itself 27, 28.  The biological olfactory system has both inspired 
modifications of traditional analytical methods 26, 29 and guided biomimetic approaches to signal 
identification in both chemosensory and non-chemosensory datasets 2, 30-36.  In comparison to 
these diverse approaches, the distinguishing features of the present report are the rapid learning 
of the EPL network, its spike timing-based attractor dynamics, its performance on identifying 
strongly occluded signals, and its field-deployable Loihi implementation.   

 

  



 

 
 

SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure 1.  Illustration of “continuous” sampling by a trained network with 
impulse noise uncorrelated or correlated in time.  a, Processing of eight immediately successive 
samples of a toluene plume from the Vergara et al. dataset 26, sampled at 100 Hz (10 ms per 
sample).  Each sample was processed over five successive gamma cycles, requiring a total of 2 
ms (see Methods).  The instantiation of impulse noise (P = 0.5) was randomized for each sample.  
b, As in a, except that a single instantiation of impulse noise (P = 0.5) was maintained across all 
eight successive samples, modeling the continued presence of a single set of occluding inputs.  
The algorithm is indifferent to the presence or absence of these noise correlations over time.   
  



 

 
 

 
 
Supplementary Figure 2.  Few-shot training of toluene with destructive interference. a, No 
impulse noise during training.  Left panel: Evolution of the excitatory weights of a set of MCs 
onto one GC over the course of training (excitatory learning rate set to 0.005). Synapses are color 
coded. As training progresses, the weights of an odourant-specific set of synapses increase, while 
the weights of other synapses decrease. Center panel: Evolution of the inhibitory weights of 
three GCs onto one MC over the course of training (inhibitory learning rate set to 0.1). As 
training progresses, the weights converge to values that reflect the timing difference between 
pre- and post-synaptic spikes (see Methods). Right panel: After training, the network attracts test 
samples of toluene to the learned representation over the course of five gamma cycles. Graphs 
depict the similarity between test samples of toluene and the learned representation of toluene, 
averaged across 100 test samples. Impulse noise for each test sample was randomly selected 
from the range [0.2-0.8].  b-c, Same as a, but with impulse noise during training set to 0.2 and 
0.4 respectively. Excitatory and inhibitory weights gradually converge to their respective values, 
despite the destructive interference. After training, the network accurately recalls the learned 
representation of toluene over the course of five gamma cycles. d, Same as b-c, but with impulse 
noise during training set to 0.6.  Noise dominates the training process for this level of destructive 
interference, and excitatory and inhibitory weights do not converge to their correct values within 
200 training sniffs. After training, the network is unable to recall the learned representation of 
toluene from the corrupted test samples. Results of panels a-d were generated using a software 
model of Loihi.  
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