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We describe an integrated theory of olfactory systems operation that incorporates

experimental findings across scales, stages, and methods of analysis into a common

framework. In particular, we consider the multiple stages of olfactory signal processing

as a collective system, in which each stage samples selectively from its antecedents. We

propose that, following the signal conditioning operations of the nasal epithelium and

glomerular-layer circuitry, the plastic external plexiform layer of the olfactory bulb effects

a process of category learning—the basis for extracting meaningful, quasi-discrete odor

representations from the metric space of undifferentiated olfactory quality. Moreover,

this early categorization process also resolves the foundational problem of how odors

of interest can be recognized in the presence of strong competitive interference

from simultaneously encountered background odorants. This problem is fundamentally

constraining on early-stage olfactory encoding strategies and must be resolved if

these strategies and their underlying mechanisms are to be understood. Multiscale

general theories of olfactory systems operation are essential in order to leverage the

analytical advantages of engineered approaches together with our expanding capacity

to interrogate biological systems.

Keywords: spike synchronization, category learning, perceptual learning, olfaction, plasticity, neuromorphic,

computational modeling, learning in the wild

INTRODUCTION

Theoretical models of neural systems serve as proofs of concept, tests of sufficiency, and
quantitative embodiments of working hypotheses (Cleland and Linster, 2005). Well-vetted models
impose discipline on hypothesis generation, and become particularly important when the systems
under study are too complex to simply intuit. However, such models can reflect only the sources
of variance that are adequately appreciated by theoreticians during model design. It is axiomatic
in engineering that new designs are likely to require revision once physical prototypes are built,
often because neglected minor variables generate significant unforeseen effects. This same principle
applies to the reverse engineering of biological systems. Biological systems are physical systems that
operate autonomously within insecure and incompletely predictable natural environments; their
continued existence implies their adequate management of all relevant variables and successful
exploitation of pertinent information. Identifying the properties that enable biological systems to
adapt successfully to unmitigated natural variance is a core challenge both for our understanding
of biological operations and for the design of autonomous robotic systems.
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Here, we describe a set of physically explicit systems models
of the early olfactory system that constrain and elucidate the
neuronal networks that sample chemosensory data from the
environment and present information extracted from these
data to the central nervous system. This approach emphasizes
an integrated appreciation of systems-level operations in
situ: i.e., given a limited physical toolset of sensors and
network elements, what data can be reliably acquired, what
useful information can be plausibly extracted therefrom,
and what conditions must be met in order to extract
this useful information successfully? To date, this reverse
engineering strategy has produced predictive models that
have stood the test of time—despite their initial construction
on relatively sparse direct evidence, and despite substantial
revisions, owing to subsequent experimental studies, to our
understanding of the cellular and network elements that
directly underlie these computations. In particular, physical,
engineered instantiations of biological systems models and
the utilization of physical sensor data can present designed
networks with the full spectrum of underappreciated difficulties
that natural systems encounter routinely, thereby probing their
capacities to manage unregulated stimuli encountered under
unpredictable circumstances.

THREE CORE PROBLEMS IN
ENGINEERING SENSORY SYSTEMS

In sensory systems, this capacity for managing unpredictable
input statistics is particularly important, because the external
physical environment does not respect the limitations of
biological systems, and the process of data sampling lacks the
shared assumptions between sender and receiver that underlie
the efficient encoding and transmission of information. Sources
of potentially informative variance in the physical world are
wildly diverse, and biological sensory systems must adapt to
acquire the information that they need using tools with imperfect
and idiosyncratic properties. These principles strongly constrain
and determine the architecture of sensory systems. As a rough
analogy, much of the circuitry in a commercial amplifier
also is designed to manage unregulated external variance and
compensate for the physical limitations of circuit elements so that
the core amplifier elements can function properly and predictably
in the real world. Neurons also exhibit limited bandwidth,
notoriously non-linear response properties, and relatively narrow
response ranges to sensory or synaptic input. It is to be expected
that many of the circuit elements and properties of early
sensory systems exist for the unlovely but essential processes of
signal conditioning.

The core problems addressed by sensory systems can be
divided into three phases:

(1) Sampling the environmental variance of interest adequately,
using available sensors, by any means necessary. In
particular, the range of intensities of environmental signals
often exceeds the response ranges of biological sensor
elements by orders of magnitude. This renders it difficult to

even encode afferent information, much less to organize it
internally once encoded.

(2) Identifying the particular aspects of the sampled variance
that are relevant to a given sensory or behavioral task,
and segregating this information from the uninteresting or
confusing aspects of that variance.

(3) Transforming the sensory information into a usable format
or formats. This includes the problem of rendering this
information relatively portable—i.e., usable by other brain
systems and integrable with other modalities. Sometimes this
may involve reframing such information into a common,
abstract metric space.

Sampling Strategies
All sensory systems diversify their primary sensors in order
to adequately sample the relevant environmental variance.
Retinal cone photoreceptor sensitivities are diversified along
the axis of wavelength, such that together they are able to
detect a wider chromatic range of signals and, once detected,
identify and distinguish specific colors (Birch and Wright,
1961). Adaptation to a wide range of environmental light levels
is achieved by a set of strategies including iris contraction
and the reliance on different photoreceptor populations during
light-adapted and dark-adapted vision. Similarly, somatosensory
tactile mechanoreceptors are diversified along axes of depth
(under the skin) and adaptation timescale, as well as physical
location on the body, so that in combination a wide range of
contact modes, textures and other constructed tactile stimuli can
be distinguished.

Nasal chemoreceptors are notoriously diverse, with mammals
exhibiting hundreds of different olfactory receptor types in their
noses that selectively respond to specific ranges of molecular
ligands (Araneda et al., 2000). However, ligand concentration also
strongly affects receptor binding and olfactory sensory neuron
(OSN) activation (Schaefer et al., 2001; Storace and Cohen, 2017),
substantially disrupting the naïve odor quality signal based on
combinatorial activation patterns. Accordingly, a great deal of
attention has been paid to the broad problem of concentration
“invariance” in olfaction. However, there has been relatively little
attention paid to the closely related problem imposed by the
sharply limited dynamic response ranges of individual neurons.
How can different odorant concentrations spanning multiple
orders of magnitude even be sampled given the Boltzmann
limitations on ligand-receptor binding properties (cooperativity
≥1), which restrict the dynamic input range of primary sensory
receptors to roughly 1.5 orders of magnitude concentration?
And, if this can be solved, how can this signal diversity then
be organized and compressed back into a range that can be
physically represented by downstream neural activity?

The answer to this question has not been fully experimentally
demonstrated, but theoretical work has demarcated a set of
strategies that could underlie this capacity. Briefly, if a large
population of sibling OSNs (i.e., those expressing the same
odorant receptor) could exhibit diverse EC50 values—hence each
responding optimally to a different concentration range—then,
in combination, their population activity generates a Boltzmann
function with a reduced cooperativity and a correspondingly
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extended dynamic range across concentrations. This diversity
can be achievedwithout loss of specificity if primaryOSNs exhibit
a range of spare receptor capacities (Cleland and Linster, 1999).
The population activity then can be extracted from the glomeruli
of the main olfactory bulb (MOB), upon which the axons
of sibling OSNs converge (Figure 1). Indeed, optical imaging
studies have demonstrated that the dynamic ranges of glomerular
activation (effectively presynaptic population recordings from
convergent OSN axons) extend across many orders of magnitude
of odorant concentration, even as the corresponding postsynaptic
activity in the apical dendrites of second-order principal neurons
(mitral and tufted cells;MTCs) remains relatively stable (Storace
and Cohen, 2017). These results reveal that the primary OSN
population can successfully encode an extensive intensity range
of environmental variance, encompassing diverse qualities, and
concentrations of some number of odorous ligands. A series of
established neurophysiological mechanisms then can compress
this wide-range population signal into the limited dynamic range
exhibited by activated MTCs (reviewed in Cleland et al., 2012;
Cleland, 2014).

Selecting Relevant Variance
The processes by which primary sensory representations are
mined for useful information are hugely diverse and challenging
to fully understand. Primary representations generally reflect
information derived from multiple conflated causes and sources
and are correspondingly difficult to parse. A two-dimensional
retinal pattern includes multiple objects of potential interest,
occluding one another and perhaps in motion, embedded within
regions that may exhibit very different intensities of light and
contrast. Odorant receptors are affected by concentration as well
as quality; moreover, the ligands that comprise different sources
of interest may compete for the same receptors—as agonists,
partial agonists, or antagonists—and hence occlude source-
specific signal patterns (Gronowitz et al., 2020; Xu et al., 2020;
Zak et al., 2020). Indeed, even two source odorants in binary
mixtures often strongly interfere with one another, generating
activation patterns that do not resemble the diagnostic patterns
of any individual source (Linster and Cleland, 2004; Riffell,
2012; Thomas-Danguin et al., 2014). Aside from the specialized
mixture interactions literature, most contemporary studies of
“odor coding” elide this fundamental problem, focusing instead
on single odorants delivered under clean conditions. We
argue here that the problem of inter-source interference is
fundamentally constraining on early-stage olfactory encoding
strategies and must be resolved if these strategies and their
underlying mechanisms are to be understood.

We propose that the most effective metaphor for framing
the complexities of sensory processing is that neuronal
populations comprise computational stages, each of which
selectively constructs a sensory representation from the activity
of its antecedents. That is, after the most peripheral sensory
circuits have sampled a wide diversity of information from
the environment, secondary sensory circuits sample in turn
from this ensemble, deploying specific sampling strategies to
selectively extract desired information as if they were themselves
primary sensory neurons. Critically, multiple different neuronal

populations can extract different information from the same
antecedent ensemble, and these divergent pathways then can
serve different, if potentially interacting, goals (Milner and
Goodale, 2008; Milner, 2017). In the olfactory system, for
example, mitral cells, and projecting tufted cells exhibit different
response profiles to odors and concentrations (Igarashi et al.,
2012; Geramita andUrban, 2017), although both sample from the
same primary sensory information presented by MOB glomeruli.
Moreover, different subsets of these principal neuron populations
project from the olfactory bulb to divergent follower structures—
including a lateral pathway to the piriform cortex (PCx) and
cortically organized olfactory tubercle, a ventromedial pathway
to the striatally organized portion of the olfactory tubercle,
and a rostromedial pathway to the tenia tecta and indusium
griseum (Ojima et al., 1984; Cleland and Linster, 2019)—and
emphasize different features of odor stimuli (Nagayama et al.,
2010; Igarashi et al., 2012; Xia et al., 2015). The same metaphor
can be applied at a more focused scale as well; for example, one
can meaningfully speak of the two computational layers of the
olfactory bulb (Cleland, 2014), or even of the properties of the
MTC representation vs. those of the granule cell representation
as they each evolve along the timecourse of signal processing.

These selective sampling processes are inescapably
intertwined with the transformations in the representational
metric itself that occur in the MOB. Activity across the
population of primary sensory neurons is temporally structured
in the theta band (2–8Hz; owing primarily to respiration), but
there is no suggestion there of spike timing regulation on any
faster timescale. Hence, when considered at faster timescales
this information is effectively rate-coded (with high OSN
convergence ratios onto MOB glomeruli greatly reducing the
time required for a reliable estimate of population activity). In
contrast, activity in MTCs is structured on the gamma timescale
(40–110Hz). Specifically, mitral cell spikes are phase-constrained
with respect to stimulus-evoked gamma rhythmicity (Eeckman
and Freeman, 1990; Kashiwadani et al., 1999; Bathellier et al.,
2006) that is generated within olfactory bulb circuitry by a
sophisticated dynamical system (Li and Cleland, 2017). This
metric transformation offers several computational and energetic
advantages, and is capable of representing the activation profile
across glomeruli using gamma phase in place of aggregate
spike rate (Imam and Cleland, 2020). However, any such
transformation also provides opportunity to bias the information
content of the activated ensemble. This is the essence of selective
sampling and the basis for the extraction of useful information
from afferent ensembles. However, that said, it is vanishingly
unlikely that any single transformation will permit the activity
in the follower ensemble to represent one variable of interest
exclusively. The physiological tools of transformation are
limited, and the environmental variables of potential interest
deeply conflated.

For example, current models of olfactory bulb information
processing (Cleland and Sethupathy, 2006; Cleland, 2014; Li and
Cleland, 2017) require that a measure of concentration tolerance
be established within and/or prior to the deep glomerular
layer of the olfactory bulb. The dominant effects of stimulus
concentration on the breadth and intensity of glomerular
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FIGURE 1 | Circuit diagram of the mammalian olfactory bulb. The axons of olfactory sensory neurons expressing the same odorant receptor type converge together

as they cross into the brain and arborize together to form glomeruli (shaded ovals) across the surface of the olfactory bulb. Several classes of olfactory bulb neuron

innervate each glomerulus. Interneurons include external tufted cells (ET), olfactory nerve-driven periglomerular cells (PGo), and external tufted cell-driven

periglomerular cells (PGe). Superficial short-axon cells (sSA) project broadly and laterally within the deep glomerular layer, interacting with glomerular interneurons.

Principal neurons include mitral cells and projecting tufted cells (collectively depicted as MT), which interact via reciprocal connections in the external plexiform layer

(EPL) with the dendrites of inhibitory granule cells (Gr). Both of these principal neuron types project divergently to several regions of the brain. EPL interneurons and

the multiple classes of deep short-axon cell are not depicted. OE, olfactory epithelium (in the nasal cavity); GL, glomerular layer; EPL, external plexiform layer; MCL,

mitral cell layer; IPL, internal plexiform layer; GCL, granule cell layer. Filled triangles denote excitatory synapses; open circles denote inhibitory synapses. Note the

updates to this diagram compared to its earlier incarnations (e.g., Cleland, 2014).

activation (Schaefer et al., 2001; Storace and Cohen, 2017)
must be reduced for quality-dependent computations to be
practically achievable. Indeed, it has long been established that
the range of activity in MOB principal neurons is powerfully
constrained. Increased odorant concentrations excite some
MTCs while inhibiting others (Wellis et al., 1989), and the
absolute range of spike rates observed in these neurons is
sharply limited with respect to the corresponding ranges of
afferent input levels. This degree of concentration tolerance
suffices to enable these quality-dependent bulbar computations,
and the normalization of activity generates what has been
called a relational representation among MTCs (Cleland et al.,
2007). However, this is different than saying that the MOB
circuit achieves concentration invariance. Concentration still

influences the activity of MOB principal neurons, and hence
is also measurable in postbulbar target structures such as the
PCx (Bolding and Franks, 2017, 2018). But what is the effect
of concentration-dependent variance in this projection? Is it (1)
a residual contaminant of a quality signal, requiring additional
mechanisms within the PCx to achieve a concentration-invariant
representation? (2) irrelevant, because afferent inputs to PCx are
read out on a different basis (such as spike synchronization; cf.
Luna and Schoppa, 2008) that simply bypasses the differences
in gross activity attributable to concentration? (3) fed forward
to PCx in a physically sophisticated format, such that cortical
circuits can easily select for and operate on quality-dominant
information while also retaining access to intensive salience,
which is an established factor in olfactory learning (Cleland and
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Narla, 2003; Cleland et al., 2009)? The importance of spike timing
regulation on the gamma and beta timescales, which govern
both spike integration efficacy and spike timing-dependent
learning rules, forces these questions into the forefront. Activity
does not necessarily imply meaning, and interpreting neuronal
activity patterns based on incorrect hypotheses of coding will
lead to qualitatively incorrect interpretations. To understand
sensory encoding, activity in any given neuronal ensemble must
be analyzed from the perspective of multiple metrics with
clear theoretical bases—how much does this activity represent
particular sensory variables of interest, and by what activity
metrics does it do so? A separate question, then, is to what extent
various follower circuits extract and utilize these different bases
of information.

Transforming Variance of Interest
A third essential determinant of sensory processing mechanics
is their need for integration with other sensory modalities
and brain systems. Both the information architecture that
organizes communication among disparate brain systems and
the underlying physical mechanisms that directly mediate
this communication must be considered when hypothesizing
encoding and transformation strategies for particular systems.
Two related questions, in particular, should be posed: (1) is
there physiological evidence for a common abstract metric
space in which multiple modalities or antecedent ensembles
can manipulate shared variables? (2) is multimodal integration
a discrete, discernable stage of processing, or might it
be intercalated deeply into early sensory processing? These
questions both relate to the overall question of just how
modular and functionally independent we should consider such
neural systems to be. How much do local networks insulate
one another from a dependence on their many essential local
parameters? For example, primary motor cortex in primates
appears to encode hand movements as population vectors in
veridical space, insulating this common, abstract representational
metric from the direct governance of the contractions of many
obliquely oriented muscle fibers that control the angles of
multiple arm joints and the need to adapt to their non-linear
viscoelastic properties (Georgopoulos, 1996; Georgopoulos and
Carpenter, 2015). Higher-level olfactory representation often
is considered more categorical, hence unlikely to utilize an
underlying low-dimensional map akin to these population
vectors, but the underlying question remains. How is odor
information embedded into useful multimodal representations,
and where and how does multimodal informationmerge with the
olfactory sensory cascade?

Odor identification is commonly considered the chief goal
of the olfactory system, but it is not clear that this constitutes
a singular representational end point. One might instead ask,
what are the implications of the sampled olfactory information?
A particular odor might have different implications in different
contexts, or when paired with specific inputs from other
modalities. Should the sensory system be expected to purify
the odor identification signal first, and only then coordinate
it with other modalities and memories (the classical sensory
cortex/association cortex dichotomy)? Or do physiological odor

representations depend upon non-olfactory factors at early
stages of processing, such that they quickly cease to be strictly
“odor representations?”

There is increasing evidence that the latter is the case. In
particular, recent work in the anterior olfactory nucleus (AON)
has revealed that it is, at least in part, an efferent structure that
mediates contextual information from the hippocampus into
the olfactory system—very likely into the olfactory bulb itself
(Aqrabawi et al., 2016; Aqrabawi and Kim, 2020; Levinson et al.,
2020). Direct projections from hippocampal CA1 pyramidal cells
also terminate in the MOB granule cell layer (Padmanabhan
et al., 2018). That is, sophisticated non-olfactory contextual
information is embedded into the olfactory sensory cascade at
the same early processing stage that initiates fast oscillatory
dynamics (Lagier et al., 2007; Li and Cleland, 2017) and
may underlie odor category formation (see External Plexiform
Layer Transformations section). Moreover, it has already been
established that MTC activity reflects olfactory task learning
(Doucette and Restrepo, 2008) and the acquired reward value of
odors (Doucette et al., 2011; Nunez-Parra et al., 2014), as well as
odor quality per se. These results suggest a sensory system more
aligned toward providing actionable, contextualized information
than toward the distillation of invariant odor representations.

The governance of interareal communication in the brain
is often based upon transient periods of coherence in higher
frequency bands including beta (15–40Hz) and gamma (Baird
and Eeckman, 1993; Fries, 2015). Interactions between the MOB
and the PCx appear to be governed by transient periods of
oscillatory coherence in the beta band that emerge when MOB
gamma oscillations slow down and phase-lock with activity in the
anterior PCx (Litaudon et al., 2003, 2008; Cenier et al., 2009; Kay
and Beshel, 2010; Frederick et al., 2016). The dynamics of MOB
interactions with other structures are less well-characterized,
though it has been suggested that the mitral and projecting
tufted cells in the MOB interact with two separate populations of
granule cells (Orona et al., 1983; Geramita et al., 2016), enabling
them to maintain separate and simultaneous LFP oscillations
within the MOB at different gamma frequencies (Manabe and
Mori, 2013; Frederick et al., 2016). These dynamics in turn could
support separate and simultaneous lanes of communication to
the PCx and the olfactory tubercle, predicated upon different
samplings of the same sensory information transformed into
parallel spike timing-based representations. Understanding these
physical metrics of information encoding and transfer, along with
their governing mechanisms, is critical if we are to understand
the selective routing of information across the communication
networks of the brain.

THEORETICAL CAPACITIES OF
OLFACTORY BULB CIRCUITS

Assessing the capabilities of a complex circuit requires a heavy
reliance on theory, and specifically theory that can be challenged
and validated across multiple scales and levels of organization.
Our early network models examined how OSN populations
are able to encode odorants across wide concentration ranges
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despite the sharply limited dynamic ranges of individual OSNs
(Cleland and Linster, 1999), and, once these concentration ranges
were captured, how the embedded odor quality information
could be segregated from the strongly dominant concentration
effects via a sequence of transformations (Cleland et al., 2012),
culminating in a more relational pattern of MTC activation
(Cleland et al., 2007). In addition to reflecting physiological
data (Wellis et al., 1989; Storace and Cohen, 2017), excising
the bulk of the mass-action effects of concentration prior
to MTC activation is essential for high-dimensional contrast
enhancement mechanisms that can distinguish highly similar
odorant representations (Cleland and Sethupathy, 2006; Cleland,
2010). A common feature of these modeling approaches is that
they focused onMarr’s algorithmic level of analysis, which defines
how an identified computational problem can be solved without
necessarily specifying mechanism (Marr and Poggio, 1977;
Marr, 1982). The algorithmic function of these transformations
(e.g., high-dimensional contrast enhancement, concentration
tolerance) must exist in order for the body of theory to stand.
However, as discussed below, the particular networkmechanisms
initially proposed may be partially or wholly wrong without
disrupting the larger body of theory.

In contrast, other olfactory systems models are genuinely
multiscale, combining algorithmic function with Marr’s lowest
level of implementational detail. These compartmental models
require copious constraining data for validation, but are uniquely
valuable as existence proofs for the operations of complex
physiological systems. For example, fast, synchronous network
oscillations in the gamma band have long been recognized as
endogenous to the activated olfactory bulb, emerging from the
reciprocal synaptic interactions of the external plexiform layer
(EPL; Figure 1; Lagier et al., 2007). However, the dynamical
system presumed to underlie these oscillations, pyramidal-
interneuron network gamma (PING; Traub et al., 1997; Borgers
et al., 2005), was not clearly capable of explaining the set
of properties exhibited by the olfactory bulb circuit. For
example, the local PING frequency is sensitive to the degree of
excitatory neuron excitation. Given that substantially different
levels of activation among MTCs are the very basis for
odor representation, it was unlikely that an unmodified PING
mechanism could maintain global synchrony at a common
frequency across the entire EPL. Other properties, such as MTCs
firing action potentials on some, but not all, gamma oscillations
were similarly challenging to square with PING dynamics.
Attention eventually turned to the importance of the Type II
resonance properties of mitral cells (Desmaisons et al., 1999;
Balu et al., 2004; Rubin and Cleland, 2006). Cellular resonance
arises from particular balanced configurations of membrane
currents, yielding intrinsic subthreshold membrane potential
oscillations and imposing a constrained range of favored spiking
frequencies. The inclusion of mitral cell resonance properties
improved the performance of gamma rhythmicity models in the
MOB (Brea et al., 2009), subsequently leading to a modified
PRING model for MOB gamma oscillations that highlighted
the potential importance of spike timing-based information in
the system (Li and Cleland, 2013, 2017; Peace et al., 2018).
These are implementational models not simply because of their

biophysical detail, but because the questions that they answer
are mechanistic. If the membrane and synaptic mechanisms that
underlie PRING dynamics prove substantially incorrect, then we
no longer understand how broad gamma-band synchronization
is achieved in the MOB.

One limitation of both types of purely computational
models is that they are only able to study the problems that
are appreciated by their creators. Sensory systems deployed
“in the wild” have many additional, underappreciated sources
of variance to contend with: e.g., interference among odorants
from multiple sources (competition for receptors, unknown
ligand-receptor efficacies), the adaptation, decay, drift, and/or
dropout of receptors, unpredictable fluctuations in odorant
concentrations, effects of temperature and humidity, and odor
plume dynamics. Testing models with data from physical
chemosensor arrays and instantiating biomimetic networks
within field-deployable systems provides yet another level
of insight into the inconspicuous but essential operations
that such systems must perform. Notably, these engineered
implementations have revealed a number of problems
encountered by our algorithms when deployed “in the wild,”
each of which has suggested resolutions that now can be analyzed
and experimentally investigated in the biological system. We
here summarize and review our common, internally consistent,
and broadly data-constrained multiscale framework for sensory
processing in the two computational layers of the olfactory bulb,
as instantiated in and vetted by computational models and/or
engineered neuromorphic systems.

Glomerular Layer Transformations
The axons of primary OSNs project to the glomerular layer of the
MOB, with those of OSNs that express the same odorant receptor
converging together to form receptor-specific glomeruli within
that layer (Figure 1). The activity of these convergent OSNs is
sampled by tens of principal neurons (MTCs) extending apical
dendrites into each glomerulus; however, the resulting activation
of these MTCs is substantially modified by glomerular-layer
computations mediated by a diverse population of interneurons.
These computations effect critical signal conditioning functions
including contrast enhancement and concentration tolerance,
though evidence of structural plasticity among glomerular
interneurons further suggests that this layer also mediates
additional operations of interest.

Concentration Tolerance
The need for substantial concentration tolerance transformations
in the early olfactory cascade, prior to MTC activation, has
long been clear (Cleland et al., 2007, 2012). As discussed
above, however, this does not imply a need for concentration
invariance. Indeed, MTCs retain a measure of sensitivity to odor
concentration changes, and, moreover, mitral and projecting
tufted cells differ in the details of their responses to intensity
differences (Geramita and Urban, 2017). However, the enormous
range of intensity differences encountered under natural
circumstances is strongly compressed by early transformations in
this system, and these initial models were constructed to elucidate
these processes.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 September 2020 | Volume 14 | Article 579143

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Cleland and Borthakur Signal Transformations in Olfactory Bulb

A substantial portion of the absolute compression of
environmental intensities is probably mediated by a series of
mechanisms including axonal convergence, feedback inhibition,
and homeostatic synaptic scaling within MOB columns (Cleland
et al., 2012). However, it also is essential to supplement
these mechanisms with a relational feedback mechanism that
normalizes with respect to the total activity sampled across
columns. This requires a network able to mediate lateral
interactions among columns prior to the activation of MTCs,
and the only plausible candidate was a lateral network based
upon superficial short-axon cells in the deep glomerular layer
(Figure 1; Cleland and Sethupathy, 2006; Cleland et al., 2007).
Experimental findings at the time indicated that these neurons
were excitatory and projected to inhibitory periglomerular cells
across multiple MOB columns (Aungst et al., 2003). Based
on these data, the proposed mechanism for this relational
normalization was a small-world network that leveraged this
lateral excitation to build an estimate of mean global activation
and then deliver it, via periglomerular cells, onto MTCs as
inhibition (Cleland et al., 2007; Cleland, 2010, 2014).

Subsequent experimental work, however, made it clear that
short-axon cells are in fact inhibitory interneurons, expressing
GABA and dopamine (Banerjee et al., 2015), in this resembling
the GAD67-expressing subtype of periglomerular cells (Kiyokage
et al., 2010) [Indeed, the multimodal diversity of GABA-
expressing interneurons in MOB can be interpreted as a
single, distinctly heterogeneous cell group encompassing both
the (traditionally defined) periglomerular and short-axon cell
types (Sethupathy et al., 2013), though more recent findings
indicate a more categorical distinction between presumptive
short-axon cells and the remaining diversity of periglomerular
cells (Galliano et al., 2018)]. These Banerjee et al. findings entirely
superseded the Cleland et al. model predicated on excitatory
lateral projections. However, critically, that same work also
clearly demonstrated that this network of superficial short-axon
cells did, in fact, effect concentration tolerance in the deep
glomerular layer as predicted at the algorithmic level of analysis.
Moreover, the network elucidated by Banerjee et al. is likely to
be more powerful and flexible at its purported task than the
small-world model that it replaces. In particular, being based
on inhibition, it is more intrinsically stable, and in principle
may exhibit a greater capacity to distribute inhibition selectively
onto external tufted cells in different MOB columns. That is,
in addition to the relational normalization process required
for concentration tolerance, there also may be more adaptive,
non-uniform transformations, as is suggested by the retention
and differentiation of adult-born interneurons in this layer into
periglomerular cells (Hack et al., 2005)—though perhaps not
short-axon cells (Galliano et al., 2018)—as well as by recent
computational modeling work (Zavitz et al., 2020).

Non-topographical Contrast Enhancement
Non-topographical contrast enhancement (NTCE; Cleland and
Sethupathy, 2006; Cleland, 2010, 2014) was proposed as a
mechanism by which highly similar odorant representations
could be rendered more dissimilar by surround inhibition,
analogous to that observed in retinal circuitry. Notably,

genuine surround inhibition had been clearly described in
MTC recordings (Yokoi et al., 1995)—as distinct from weaker
decorrelation strategies that simply rely upon non-specific
activity reductions to reduce overlap among representations. The
critical issue of conflict, however, was the metric space in which
this surround needed to be mapped. Contemporary assumptions
were that the olfactory bulb, like the retina, effected contrast
enhancement via nearest-neighbor lateral inhibition based on the
physical proximity of MTCs, and that this effect was mediated
via inhibitory granule cells. NTCE laid out, on theoretical
grounds, why this could not be so. Similarity relationships in
odor space are predicated to substantial extent upon similarities
in the activation patterns across hundreds of differently
tuned receptor types, and therefore exhibit correspondingly
high dimensionalities. Systematic changes to these similarity
relationships via contrast enhancement consequently need to
be determined in that same high-dimensional framework, and
certainly could not be adequately approximated by any two-
dimensional transformation such as that based on physical
proximity in a layered network. However, of course, it was not
yet clear how high-dimensional operations could be performed
by olfactory bulb circuitry.

The mechanism proposed for NTCE constituted a self-
normalization scheme in which the glomerular circuitry of
individual MOB columns generated an “inhibitory surround”
effect that was directly dependent on overall afferent activation
levels. Briefly, when afferent input was weak to moderate,
feedforward inhibition would dominate and the MTC would
be inhibited, whereas when the input to that column was
stronger, excitation would overcome inhibition and drive MTCs
to fire. A relational normalization circuit (see Concentration
Tolerance section) was required in order to render the NTCE
mechanism robust to changing odorant concentrations, thereby
ensuring that “weak/moderate” and “stronger” inputs in this
context would be assessed relative to one another. That is,
across an activated ensemble of MOB columns, the MTCs of
the most strongly activated columns would fire, those of the
more weakly to moderately activated columns would be inhibited
below baseline, and the most weakly activated columns would,
naturally, generate little physiological response. This algorithm
recapitulated the observed phenomenon that, when recording
from one mitral cell and moving through its chemoreceptive
field by presenting a series of sequentially similar odorants,
the MTC would respond with excitation to its preferred
odorant stimuli and with below-baseline inhibition specifically
to those odorants most similar to its preferred range (i.e., its
“surround”). That is, NTCE effected surround inhibition with
respect to a high-dimensional odor similarity space that we
now term R-space (Figure 2; Gronowitz et al., 2020). Moreover,
NTCE predicted that this high-dimensional surround inhibition
would be mediated by periglomerular interneurons, rather
than granule cells, both because only periglomerular cells can
effect feedforward intraglomerular inhibition (Figure 1) and
because, even with that point aside, granule cells are not well-
positioned to suppress MTC spiking activity (Mcintyre and
Cleland, 2016). Subsequent experimental and computational
work in which the stringency of this contrast enhancement
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FIGURE 2 | Depiction of a three-dimensional R-space. The space of all

possible instantaneous odorant representations at the receptor (glomerular

input) level can be depicted as a unit N-cube, where each axis corresponds to

the activation level of one type of odorant receptor, and N is the number of

odorant receptor types expressed. Note that the numbers of receptor types

expressed, as well as their precise structures, are species-specific;

accordingly, odorant similarity is an organism-dependent measure. In the

three-receptor system depicted, the activation levels of the three receptor

types R1, R2, and R3 each independently range from zero at the origin (black

dot) to unity (maximally activated). Proximity in this metric space roughly

corresponds to odorant similarity (neglecting, for example, learning-dependent

effects on perception). Learned odors admit ranges of tolerated variance in the

activation levels of each receptor type, reflecting category learning and

measurable by generalization gradients; these are depicted in R-space as odor

source volumes (colored shapes). Importantly, realistic R-spaces exhibit much

higher dimensionalities than can be depicted here (human R-space is

∼400-dimensional, and the R-spaces of mice and rats are

∼1,200-dimensional), such that the distribution of odor source volumes is (1)

much sparser than depicted here, and (2) likely to lie along a surface of the unit

hypercube, in that odors generally do not activate all of the receptor types in

an animal’s complement.

could be regulated by established mechanisms of cholinergic
neuromodulation (Mandairon et al., 2006; Chaudhury et al.,
2009; Li and Cleland, 2013) lent additional support to this model
of olfactory contrast regulation.

Like the concentration tolerance circuit discussed above (see
Concentration Tolerance section), the NTCE mechanism also
requires modification owing to important experimental updates
in the structure of glomerular-layer circuitry. However, the
essence of its mechanism has been supported by a broad range
of subsequent experimental tests. It is now quite clear that mitral
cells are gated, and delayed in their activation, by feedforward
intraglomerular inhibition delivered by periglomerular cells
(Gire and Schoppa, 2009; Geramita and Urban, 2017). Direct
tests of the inhibitory control profile of MTCs by feedforward
inhibition, including the activation-dependent masking of
evoked excitation by evoked inhibition, specifically favored

the NTCE mechanism (Fukunaga et al., 2014). The relational
normalization process in the deep glomerular layer has been
experimentally established (Banerjee et al., 2015). The NTCE
prediction that there is no correspondence between MTC
chemoreceptive field similarity and physical proximity has been
clearly confirmed (Soucy et al., 2009), and the distribution of
(functional) lateral inhibitory weights among mitral cells also
does not correspond to their proximity (Fantana et al., 2008).
However, in contrast to the original NTCE circuit proposal, it
has since become clear that the afferent excitation of mitral
cells is primarily indirect (Figure 1). Specifically, convergent
OSNs activate external tufted cells, which subsequently activate
mitral cells within the same glomerulus (Najac et al., 2011;
Gire et al., 2012) as well as other glomerular interneurons,
coordinating the afferent activation of the entire glomerular
microcircuit (Burton, 2017). This is an enormously significant
update to our understanding of MOB circuitry with many
functional implications. Interestingly, however, it also preserves
the algorithmic integrity and even the essential mechanistic
principles of NTCE.

Indeed, the indirect mechanism presents advantages to the
NTCE framework, alleviating some of its vulnerabilities. For
example, NTCE works best when the effects of (disynaptic)
feedforward inhibition onto MTCs reliably precede MTC
excitation, which had been considered exclusively monosynaptic.
This was plausible, in that the exceptionally high input resistance
of periglomerular cells and the likelihood that feedforward
inhibition was mediated through their gemmules (spines)
together facilitated rapid, graded inhibition of MTCs that, if not
fast enough to precede MTC excitation per se, could be fast
enough to precede MTC spike initiation. However, the inhibition
computed by the global normalization circuit mediated by short-
axon cells would necessarily be slower, requiring the initial
inhibitory response to be sustained until this laterally computed
feedback inhibition could be incorporated. Mitral cell spike times
were in fact sufficiently delayed so as to permit this, and the
T-current plateaus observed in periglomerular cells (McQuiston
and Katz, 2001) were a potential supporting mechanism for
(briefly) sustained inhibition, but this was nevertheless an
underspecified weakness in the model mechanism. Indirect MTC
excitation via external tufted cells, however, resolves both of these
issues, as it slows the process of MTC excitation and additionally
fills the role of adjudicating the diverse excitatory and inhibitory
inputs to the column, delivering the result of this summation
to MTCs. Finally, the indirect framework also simplifies the
problem of ensuring that stimulus-activated MTC spikes are
robustly constrained by emergent fast oscillatory dynamics.
Respiration-synchronized feedforward inhibition evokes a phase
reset in mitral cell subthreshold oscillations (Desmaisons et al.,
1999; Rubin and Cleland, 2006), which is theoretically important
for the reliable recruitment of odorant-activated MTCs into a
common gamma regime (Li and Cleland, 2017). Mitral cells
that must directly adjudicate inputs from diverse excitatory and
inhibitory inputs distributed in time might be less likely to
enjoy a common, distinct reset phase across sibling MTCs, or
even across the apical dendritic arbor within a single MTC.
Whereas MTCs associated with the same glomerulus exhibit
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heterogeneous properties and non-identical responses, there is
evidence that they are coordinated to a certain extent as a
common functional unit (Schoppa and Westbrook, 2001).

External Plexiform Layer Transformations
As the previously purported functions of the EPL now were
assigned to the glomerular layer, the question naturally arose:
what does the EPL do? It clearly comprises a lateral inhibitory
network, but does not respect physical proximity—distributions
of functional lateral inhibitory efficacies are largely distance-
independent (Fantana et al., 2008). Additionally, accumulating
evidence indicated that the EPL exhibited sophisticated synaptic
and structural plasticity mechanisms (Balu et al., 2007; Gao
and Strowbridge, 2009; Moreno et al., 2009; Lepousez et al.,
2013). With appropriate weight distributions, the EPL network
theoretically was capable of transforming odor representations
in high dimensions, but, as in the glomerular layer, there
was no clear intercolumnar similarity metric by which these
computations could be framed. Moreover, unlike the glomerular
layer, all computations would presumably be based on the specific
lateral targeting of inhibition, which would require such an
explicit similarity metric in order to, for example, decorrelate
representations on the basis of their physical similarities.
The exciting possibility then arose that there was no such
predetermined metric—that the transformations in this layer
were instead governed by plasticity. Under this hypothesis, the
EPL would inherit activity patterns that had been transformed
by similarity-sensitive glomerular-layer mechanisms, but itself
would further transform these representations with respect to
distinct, similarity-independent, higher-order bases derived from
experience and dependent on network plasticity. Granule cells—
which are activated by higher-order combinations of MTC
and PCx inputs, but not by inputs from smaller numbers
of MTCs (Pressler and Strowbridge, 2017)—could learn these
combinations, transiently binding together patterns of receptor
activation that together are diagnostic for a given odor,
potentially inclusive of its value and/or context. Collectively,
then, the EPL would remap the olfactory similarity space
inherited from the glomerular layer based on experience and
learned utility.

From this, two particular hypotheses stood out. First,
the construction of category representations for meaningful
“odors” presumably must be initiated in the MOB, where
the full spectrum of afferent variance remains computationally
available. MOB output diverges into at least three separate
pathways, as noted above, and recordings from anterior PCx
(for example) suggest that odor representations there already
exhibit categorical indicators such as experience-dependent
configural responses (Wilson et al., 2006) and discontinuous
receptive fields (Stettler and Axel, 2009). Second, receptor
occlusion by competing odorant sources is a fundamental,
catastrophic challenge to contemporary models of olfactory
encoding and representation. Background odorants powerfully
disrupt the integrity of olfactory ensemble representations, and
are ubiquitous in natural environments. The ability to identify
simultaneously-encountered odors of interest in strong and
unpredictable backgrounds is essential, and must be resolved

early in the sensory cascade. Interestingly, these two hypotheses
are likely to interact, as category learning can in principle provide
the information needed to identify a known signal presented
against a background of strongly disruptive interference.

Neuromorphic Design
To instantiate and test these hypotheses, we constructed models
of the EPL network and embedded some variants of these
models in the experimental Intel Loihi neuromorphic system
(Davies et al., 2018). From the engineering perspective, the
diagnostic feature of neuromorphic networks is a reliance on
local computation; no global error term is assessed, and the
weight of a synapse is modifiable only by the activity experienced
directly by that synapse. Neuromorphic algorithms also tend
to rely on spike-based communication (i.e., they operate as
pulsed networks; Maass and Bishop, 1998), though this is
not necessarily diagnostic. Finally, they often rely upon task-
specific network architectures, and hence can be much faster
to train at the cost of generality (Imam and Cleland, 2020).
This combination of features enables neuromorphic hardware
platforms to execute appropriate neuromorphic algorithms
rapidly and with very low energy expenditure, notably by
colocalizing memory and compute resources on-chip to leverage
the benefits of local computation. A still-underappreciated
advantage of neuromorphic design is the ease with which
the properties of nodes (cells) and edges (synapses) can be
arbitrarily heterogeneous and elaborated, and networks can
fork, merge, and loop datastreams. These features, however,
are difficult to optimize, and hence place substantial burdens
upon the designer. Biologically inspired network motifs fill this
gap admirably, as the biological systems—to the extent that
they are correctly understood—provide existence proofs for
the functionality and robustness of the network architecture.
Conversely, and with the same caveats, physically instantiated
biomimetic architectures tested with real-world datasets can
challenge our understandings of biological systems and present
quantitatively vetted hypotheses for the next iteration of
conceptual frameworks.

EPL Network Plasticity Enables Rapid Learning and

Odor Identification Under Noise
We constructed a network model of the MOB external plexiform
layer based on its theoretical capacities and key circuit motifs
in order to address the problems of (1) how categorical
odor representations are generated and (2) how these might
then be leveraged to identify known odor sources within
highly interfering and unpredictable backgrounds (Imam and
Cleland, 2020). Briefly, if the plastic synaptic matrix of the
olfactory bulb EPL (Figure 1) can be leveraged to construct
categorical odor representations, sparsely distributed within
a high-dimensional receptor-based similarity space (R-space;
Figure 2; Gronowitz et al., 2020), then an attractor network
(Hopfield, 1982; Kay et al., 1996) should be capable of
identifying a known odor despite this disruptive interference.
Notably, the high dimensionality of this olfactory R-space
is of great benefit, both because the greater number of
receptor types increases the likelihood that some critical
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fraction will remain free of catastrophic occlusion, and because
higher degrees of freedom means that random disruptive
interference is increasingly unlikely to resemble a different
learned odor representation.

To construct this network model, we instantiated some core
principles of MOB computation that we have hypothesized for
the biological system (Cleland, 2014; Li and Cleland, 2017).
These include:

(1) The importance of gamma-discretized spike timing-based
computation in the EPL. This enables the direct deployment
of asymmetric spike timing-dependent plasticity (STDP)
rules, which in turn enable the construction of higher-
order, configural receptive fields in granule cells (Linster and
Cleland, 2010). PCx pyramidal neurons also are known to
be selective for synchronized MTC spikes on this timescale
(Luna and Schoppa, 2008).

(2) The principle that that only a minority of principal neurons
participate in gamma dynamics during any given stimulus
presentation, based on their afferent activation (Li and
Cleland, 2017). MTCs are known for their relatively high
background spiking activity (a side effect of their high
sensitivity to inputs), but this background activity does not
correspond to MTCs’ responsivity to odor stimuli (Kollo
et al., 2014), nor do background spikes align to the common,
coherent gamma rhythm (Werth and Cleland, 2019). The
synchrony-selective mechanisms of point (1) suggest that
MTC activity that is disorganized in time simply fails to
effectively activate follower neurons.

(3) The principle that GC inhibition of MTCs manifests as
delays in MTC spike times on the gamma timescale
(inhibition-imposed phase lag). This counteracts the phase
lead exhibited by more strongly activated MTCs owing
to their more rapid escape from inhibition on each
gamma cycle, thereby recapitulating the direct opposition
of cellular excitation and inhibition within a gamma-scale
spike timing regime. This metric transformation neatly
avoids the catastrophic limitation of rate coding assumptions
in sparsely active networks like the MOB: the need for
postsynaptic neurons to integrate over extended periods of
time in order to accurately estimate presynaptic activity.

(4) The principle that the topology of the EPL network is
not reciprocal, despite observations that individual synaptic
connections between GCs and MTC lateral dendrites often
are bidirectional. Specifically, MTC lateral dendrites project
broadly across the EPL (Mori et al., 1983; Orona et al., 1984)
and support regenerative spiking, and hence can deliver
excitation to GCs independent of proximity (Xiong and
Chen, 2002). In contrast, inhibition does not propagate; for
GCs to affect spike timing propagation in MTCs, they must
deliver their shunting inhibition very close to the afferent
axis (i.e., the MTC soma; Mcintyre and Cleland, 2016). This
facilitates the abstraction of MOB columns, each consisting
of a glomerulus, its associated principal neurons, and the
GCs that deliver effective inhibition onto those principal
neurons. Transsynaptic tracing studies suggest just such a

discontinuous and column-centric topology of MTC-GC
connectivity (Willhite et al., 2006; Kim et al., 2011).

(5) The principle that, within the constraints of this asymmetry,
the topology of the lateral inhibitory network of the EPL is
dynamically acquired and learning-dependent. Specifically,
GCs learn higher-order configural receptive fields, becoming
more specifically diagnostic of particular odorants than
is possible for principal neurons, and then deploy this
information to regulate MTC spike timing. Consistent with
this principle, GCs require either coincident activity by a
large number of MTCs, or by a smaller number of MTCs
coupled with excitation from PCx, in order to fire reliably
(Pressler and Strowbridge, 2017). Moreover, task learning
is known to shape MTC activation profiles (Doucette and
Restrepo, 2008), and acquired odor-reward associations
regulate MTC spike synchronization patterns (Doucette
et al., 2011).

(6) The corollary to point (5) that GCs are permanently
differentiated by recruitment during the process of odor
learning, and therefore require constitutive replacement
by adult neurogenesis in order to enable future (lifelong)
learning. Such a strategy for category learning may explain
why GCs outnumber MTCs by roughly 25:1 (Meisami and
Safari, 1981; Frazier and Brunjes, 1988; Royet et al., 1998),
whereas most brain regions exhibit comparable numbers of
excitatory and inhibitory neurons, or even a bias toward the
excitatory (Shepherd, 2004).

(7) The possibility that neuromodulation should be conceived
as an optimization trajectory rather than as a stationary,
behaviorally-dependent state.

This combination of elemental structures and properties enabled
the construction of a neuromorphic network that, for the
first time, successfully addressed the problem of identifying
odor sources despite powerful interference by simultaneously
encountered background odorants within a complex chemical
environment (Imam and Cleland, 2020). Odor presentations
were drawn from the responses of a 72-chemosensor array
to stimulation with a complex odorant plume in an wind
tunnel (Vergara et al., 2013). Background interference included
both Bernoulli and quasi-Gaussian components. Specifically,
Bernoulli noise was delivered by replacing the activity levels of
some fraction of the sensors (typically 40–60%) with random
numbers. This process models competition for receptors by
other, unknown odorant species that may strongly activate,
weakly occupy, or block the activation of any given receptor
in an unpredictable manner (Araneda et al., 2000; Gronowitz
et al., 2020). Quasi-Gaussian noise was drawn directly from the
plume dynamics of the odorants as encountered, and imposed
additional variance on the output of all receptors. Networks
trained on all 10 different odorants with one-shot learning
reliably identified all 10 noise-occluded test odors. Briefly,
local spike timing-dependent learning rules at excitatory and
inhibitory synapses generated fixed-point attractors that, when
presented with occluded test odorant signals, iteratively modified
the activity pattern via recurrent inhibition over multiple gamma
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cycles until the known odor could be clearly identified (Imam and
Cleland, 2020).

Training using this algorithm is rapid—even one-shot
learning suffices to learn a new odorant signature. Moreover,
the network naturally exhibits online learning—the capacity
to learn multiple inputs (odors) sequentially, without the
new training causing the catastrophic forgetting of previous
training. Both of these properties stand in sharp contrast to
the properties of contemporary deep networks. Specifically, a
similarly sized deep network required thousands of training
trials, plus foreknowledge of the variance structure of the
interference, in order to reach the same levels of task performance
as this neuromorphic strategy, and also lacked the capacity for
online learning (Imam and Cleland, 2020). These properties
of the EPL network model parallel those of the biological
system: rapid learning, robust identification under noise, and
the potential for sustained performance across unpredictable or
changing environments.

This implementation demonstrates that the circuitry of
the mammalian MOB is, in principle, capable of supporting
odor category learning (potentially inclusive of context and
valence, as discussed above) and of using these categorical
memories to facilitate odor recognition in complex milieus. The
particular benefit is that category learning here is not simply
a cognitive outcome, but also can be applied very early in the
sensory cascade in order to achieve an extraordinarily difficult
sensory goal. That said, there are critical simplifications in this
initial implementation that must be superseded with further
development. Behavioral studies of learned odor generalization
(Cleland et al., 2009, 2012) have indicated that incipient odor
categories adapt to include ranges of quality variance that
have similar implications—that is, odor sources of interest (like
“orange”) include ranges of variation in quality that can be
genuinely random or be diagnostic of within-category properties
such as ripeness or cultivar. Odor representations, then,
constitute smooth manifolds in R-space (Figure 2) rather than
fixed points, and their categorical boundaries are probabilistic
rather than clearly discrete. The fixed point attractors used in the
initial model consequently need to be replaced with some form of
manifold learning, inclusive of intracategorical hierarchy. Rather
than one-shot learning, these manifold learning strategies will
respond to increased training experience with correspondingly
more reliable statistical estimates of category variance (Cleland
et al., 2009; Cleland, 2014). Similarly, the current form of the
inhibitory learning rule forestalls manifold learning; its more
sophisticated replacement may require expansion of the network
to include the feedback loop between MOB and PCx, which
in the biological system supersedes intrinsic MOB gamma with
slightly slower (beta band) coherent oscillations between these
two structures (Cenier et al., 2009; Frederick et al., 2016). Indeed,
existing efforts to study the neuroscience of odor categorization
have focused on the PCx and its associated limbic regions (Bao
et al., 2016; Qu et al., 2016), and analogous studies in insects
also suggest that categorical processing incorporates plasticity
in peripheral networks together with higher-order olfactory
structures (Locatelli et al., 2016; Strube-Bloss and Rossler, 2018).
Finally, the rules by which adult-generated interneurons

are incorporated into the neuromorphic network also are
simplified, privileging strict categorization over similarity-
dependent generalization processes. Nevertheless, the successes
of this prototype provide strong hypotheses for the operations
of the biological olfactory system that other experimental and
theoretical studies have not to date suggested.

Learning in the Wild
The initial EPL model proved robust to the amount of variance
associated with the odor plume together with a measure of
background occlusion. However, as discussed above, biological
systems are subject to many additional sources of uncontrolled
variance. Concentrations vary widely, sensors decay, and the
network must continually update representations according to
newly acquired information.Moreover, the goals of odor learning
include not simply classification into one of a set of discrete
categories, but the recognition of similarities among diverse
stimuli sufficient to form generalization gradients (Shepard,
1987; Cleland et al., 2002, 2009) and generate hierarchical
category representations (Edelman and Shahbazi, 2012; Clapper,
2019). Modeling these capacities in artificial systems robustly
screens alternative hypotheses for efficacy in the real world.
The overarching capacity to learn multiple odors rapidly and
sequentially, recognize diverse odors across concentrations and
under highly occluding circumstances, adapt to the breakdown
of sensors, apply perceptual learning processes to update
representations and manage similarity, and remain adapted to
an unpredictable or evolving environment is summarized as
learning in the wild.

Some aspects of learning in the wild simply require the
inclusion of established glomerular-layer computations affording
concentration tolerance and regulated contrast enhancement
(Imam et al., 2012; Borthakur and Cleland, 2019a,b). Enabling
the explicit representation of similarity further requires that
we loosen the strict controls over the allocation of adult-
born neurons used in the Loihi model (Imam and Cleland,
2020), thereby enabling granule cell interneurons to belong
to multiple ensembles according to the similarity profiles
among learned odor representations. Early instantiations of this
richer network have been promising, but also have presented
challenges highlighting two additional principles that improve
network robustness and performance: parameter heterogeneity
and data regularization. Briefly, fully instantiated networks can
be sensitive, performing best when presented with well-behaved
inputs that statistically resemble those against which they
were initially parameterized. Signal conditioning mechanisms
that afford concentration tolerance are critical in this regard
(Borthakur and Cleland, 2019b), and contrast enhancement
(whether static or deployed in a trajectory) can improve the
statistical match between a sample and the network (Imam
and Cleland, 2020). In addition to these transformations,
heterogeneity in specific model parameters can improve the
robustness of odor identification and increase the diversity of
inputs that the network can effectively process. Heterogeneity
in GC spike thresholds, for example, generates a controllable
range in the order of their post-differentiation receptive fields,
rendering some highly selective for specific known odorants
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and others more broadly tuned. Similarly, the duplication of
MTCs in each MOB column, coupled with heterogeneity in their
excitability properties, facilitates the statistical regularization
of sensory input data, thereby enabling the network to
respond effectively to a wider diversity of sensory inputs
(Borthakur and Cleland, 2019a). In neuromorphic systems, these
properties enable single, parameterized networks to function
effectively when presented with widely disparate datasets—from
chemosensor arrays with years of accumulated drift and decay
(Borthakur and Cleland, 2019b) to non-olfactory datasets with
diverse input statistics (Borthakur and Cleland, 2019a).

Heterogeneity in cellular and synaptic properties is of
course expected in biological systems, but there is increasing
evidence that this is a cultivated property of neuronal networks
rather than arising solely from inescapable random variability.
Indeed, heterogeneity in cellular and synaptic properties has
been credited with improving the sensitivity, efficiency, and
information content of neuronal ensembles (Lengler et al., 2013;
Zohar et al., 2013) and regulating the balance between network
robustness and flexibility (Gu et al., 2019). The advantages of
parameter heterogeneity observed in artificial systems models
are indicating a broader emerging principle of biomimetic
design: considerable computational power and robustness may
be achievable by relaxing control over critical variables and
subsequently reconstructing the required specificity through
effective sampling strategies.

CONCLUSIONS

Understanding any information processing system requires
insight into the problems that it faces, and the forms that
possible solutions to these problems can take (Marr and Poggio,
1977). Hence, the role of theoretical neuroscience is not only
to replicate and integrate established results, but to extend
beyond contemporary experimental findings so as to inspire
and guide subsequent investigations. Engineered systems models
expand our capacity to identify complex theoretical problems and
limitations that neither neurobiological experiments nor more
narrowly targeted models are able to appreciate. Such models
can be speculative, but are at their most powerful when they
analytically cross-reference information from multiple sources,
constraining the possible interpretations more sharply than any
of the individual contributing studies are able to do. This is
doubly true when such models incorporate complex, multi-
stage systems within a single, internally consistent, quantitative
framework. Some problems are only addressed by sequences of

mechanisms coordinated across stages. Some other problems
are best solved by relaxing the diagnostic effort at one stage
so as to improve the capacity of a subsequent stage to achieve
that diagnostic goal in a flexible and task-dependent manner.
Biological networks exemplify this multistage, systems approach
to sensory sampling and information acquisition. A corollary of
this position is that narrower, stage-specific analyses are at risk
of misinterpreting the computational and “coding” strategies of
the system.

We propose a common, integrated theory of olfactory systems
operation that incorporates experimental findings across scales,
stages, and methods of analysis into a common framework. This
constructive approach to systems analysis considers individual
stages of processing in a broadened context as contributors
to global goals, while still generating concrete, stage-specific
hypotheses that can be falsified or updated by experimental
results. By leveraging the test platforms and analytical capabilities
of engineered approaches together with our expanding capacity
to interrogate biological systems, contemporary theorists can
design, implement, and validate increasingly sophisticated and
integrated theoretical models of neural and cognitive systems.
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