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Abstract

We present a general physicochemical sampling model for olfaction, based on established

pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can

be generated and their individual and collective effects on odor representations and olfac-

tory performance measured. Individual odor ligands exhibit receptor-specific affinities and

efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong

agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common

receptors compete with one another for dwell time; these competitive interactions appropri-

ately simulate the degeneracy that fundamentally defines the capacities and limitations of

odorant sampling. The outcome of these competing ligand-receptor interactions yields a

pattern of receptor activation levels, thereafter mapped to glomerular presynaptic activation

levels based on the convergence of sensory neuron axons. The metric of greatest interest is

the mean discrimination sensitivity, a measure of how effectively the olfactory system at this

level is able to recognize a small change in the physicochemical quality of a stimulus. This

model presents several significant outcomes, both expected and surprising. First, adding

additional receptors reliably improves the system’s discrimination sensitivity. Second, in

contrast, adding additional ligands to an odorscene initially can improve discrimination sen-

sitivity, but eventually will reduce it as the number of ligands increases. Third, the presence

of antagonistic ligand-receptor interactions produced clear benefits for sensory system per-

formance, generating higher absolute discrimination sensitivities and increasing the num-

bers of competing ligands that could be present before discrimination sensitivity began to be

impaired. Finally, the model correctly reflects and explains the modest reduction in odor dis-

crimination sensitivity exhibited by transgenic mice in which the specificity of glomerular tar-

geting by primary olfactory neurons is partially disrupted.

Author summary

We understand most sensory systems by comparing the responses of the system against

objective external physical measurements. For example, we know that our ability to distin-

guish small changes in color is greater for some colors than for others, and that we can dis-

tinguish sounds more acutely when they are within the range of pitches used for speech.

Similar principles presumably apply to the sense of smell, but odorous chemicals are
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harder to physically quantify than light or sound because they cannot be organized in

terms of a straightforward physical variable like wavelength or frequency. That said, the

physical properties of interactions between chemicals and cellular receptors (such as those

in the olfactory system) are well understood. What we lack is a systematic framework

within which these pharmacological principles can be organized to study odor sampling

in the way that we have long studied visual and auditory sampling. We here propose and

describe such a framework for odor sampling, and show that it successfully replicates

some established but unexplained experimental results.

Introduction

Unlike the visual and auditory modalities, the environmental sampling metrics of olfaction

remain unclear. That is, whereas olfactory sensory transduction per se is straightforward, there

is no underlying metric of physical similarity akin to chromatic wavelength, retinotopic spatial

proximity, or auditory pitch to provide a quantitative external basis for odor similarity.

Instead, odor similarity has been mapped heuristically [1,2], with homologous series of simple

molecules and variable-ratio binary mixtures serving as behaviorally validated sets of locally

sequentially similar odorants. Indeed, in lieu of externally defined axes of similarity, these heu-

ristic odor series have been invaluable for exploration of the similarity-dependent computa-

tions of the early olfactory system [1,3–9]. It is reasonably clear that small differences in the

activation profile across an animal’s complement of odorant receptors (~1000 types in mice

and rats; ~400 in humans) underlie similar odor percepts whereas larger differences underlie

more dissimilar percepts [1,10,11], particularly if one neglects the substantial effects of odor

learning on perceived similarities [5,12–14]. However, the transformation between the physi-

cochemical space of an olfactory scene and the activation profile of the primary odorant recep-

tors expressed by an animal sampling that scene has remained essentially undefined.

For many purposes in olfactory neuroscience, this transformation is unimportant. Experi-

mental and theoretical studies of odor similarity spaces and their transformations in the neural

circuitry of the early olfactory system require only the activation profiles of primary odorant

receptors, or of the olfactory bulb glomeruli on which they converge; these receptor profiles

define an organism-dependent olfactory metric space that we term R-space (see Discussion)

into which similarity can be mapped. The details of sampling and transduction that underlie a

given receptor activation profile are academic in this context, because by definition any physi-

cochemical information that does not affect the activation of primary sensory neurons is not

incorporated into sensory processing, and the sensory response has no means of detecting

whether receptor activation is due to one ligand species alone, or a cocktail of multiple ligand

species (such as comprise most natural odors). However, there are other scientific questions

that depend on a theoretical understanding of the physicochemical sampling transformation.

For example, understanding “active sampling” behaviors requires exploration of the underly-

ing physicochemical sampling challenges as well as organismal goals [15–17]. Sampling studies

of natural visual scenes have revealed that animals’ visual systems are adapted to the spatial fre-

quency statistics of the natural world [18–20]. Many practical applications of research into sen-

sory systems prescribe modifications of the physicochemical environment, necessitating some

predictive understanding of these modifications’ effects on sensory systems. Accordingly, we

sought to develop a general theory of physicochemical sampling, by constructing a single con-

sistent framework, arising from first principles, to describe how olfactory systems sample the

chemical features of environments.

PLOS COMPUTATIONAL BIOLOGY Physicochemical model of odor sampling
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To date, efforts to describe olfactory physicochemical sampling have been largely heuristic.

The primary strategy has been to compose lists of many physicochemical properties, or molec-

ular descriptors, of various odorous molecules and cross-reference these lists with either per-

ceptual datasets [21–24] or the physiological response profiles of olfactory bulb glomerular

arrays [25,26]. While significant relationships with perceptual similarity certainly can be

found, and their principal components can be labeled (e.g., pleasantness, directed dipole, ease

of electron promotion; [21,22]), this is not ultimately a generative process. To wit, it cannot be

used to model the decomposition of odor mixtures [27], nor to strongly predict the activity of

bulbar principal neurons [28], nor to study how the same physicochemical odorscene may be

differently sampled by the noses of different animal species (potentially resulting in different

patterns of similarity within their respective R-spaces). Moreover, the use of molecular

descriptors is less concrete than it may initially seem, as the aggregate physical properties of

the whole molecule gloss over the intramolecular heterogeneities such as localized charge dis-

tributions that directly influence ligand-receptor interactions (notably, single odorant mole-

cules present multiple prospective binding sites to different receptors, the conformation of

which is critical; [29]). The strength of such approaches, of course, is that they are based on the

responses to actual odorants rather than to theoretical odorant constructs, and they can offer

some predictive utility within localized regions of odor space. Efforts to combine receptor

response data systematically with pharmacologically sound principles of ligand interaction is a

critical but challenging process [30,31].

We here present a general physicochemical olfactory sampling framework based on estab-

lished pharmacological laws in which arbitrary combinations of odorant ligands and receptors

can be constructed and their individual and collective effects on the resulting odor representa-

tion studied. Receptors occupy regions of a physicochemical quality space, or Q-space; this

space maps the strength and efficacy of ligand-receptor interactions and enables recognition of

the physical similarities among chemical species that are reflected in overlapping receptor

interactions. Critically, odor perceptual similarities depend not only on their chemical proper-

ties, but also on the particular species-specific receptor complement deployed by a given ani-

mal. The axes of Q-space are not necessarily associated with any particular physicochemical

property; they can be considered as fully arbitrary for theoretical work such as that described

herein. Alternatively, if direct correspondence with real-world odorants is desired, Q-space

axes can be defined as principal components derived from some similarity mapping process

(e.g., [22–24,26]), or as arbitrarily-defined molecular descriptors that may or may not correlate

with any aspect of perceptual similarity. In either case, the dimensionality of Q-space and the

sampling distributions of the odorant receptors deployed therein would be adapted to the

datasets and questions of interest.

The interaction of odor ligands with these receptors is defined in the model by standard

pharmacological laws. Odors may comprise one or many molecular types in characteristic

concentration ratios; additionally, each component molecule may present multiple ligands to

the complement of receptors expressed by a given animal. Individual odor ligands exhibit

receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given

receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists [31–44].

Ligands interacting with common receptors compete with one another for dwell time; these

competitive interactions appropriately simulate the degeneracy that fundamentally defines the

capacities and limitations of odorant sampling. The outcome of these competing ligand-recep-

tor interactions is expressed as a pattern of receptor activation levels, thereafter mapped to glo-

merular presynaptic activation levels based on the convergence of sensory neuron axons. The

metric of greatest interest is the mean discrimination sensitivity d �C, a measure of how
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effectively an olfactory system at this level is able to recognize a small change in the physico-

chemical quality of a stimulus.

This model presents several significant outcomes, both expected and surprising. First, add-

ing additional receptors reliably improves the system’s discrimination sensitivity. Second, in

contrast, adding additional ligands to an odorscene initially can improve discrimination sensi-

tivity, but eventually will reduce it as the number of ligands increases. At very high ligand

numbers, this process underlies and explains the phenomenon termed “olfactory white”, a

phenomenon in which odorant mixtures with very large numbers of components at compara-

ble intensities become increasingly perceptually similar to one another [27,45]. Third, the pres-

ence of antagonistic ligand-receptor interactions generated several clear benefits to sensory

system performance, producing higher absolute discrimination sensitivities and increasing the

numbers of competing ligands that can be present before discrimination sensitivity began to

be impaired. Finally, the model correctly reflects and explains the reduction in odor discrimi-

nation sensitivity exhibited by Kir2.1 transgenic mice, in which the specificity of glomerular

targeting by primary olfactory neurons is modestly disrupted.

Methods

Ethics statement

All animal procedures were performed under the auspices of protocol #2019–102, approved by

the Institutional Animal Care and Use Committee (IACUC) of the Stowers Institute for Medi-

cal Research.

Model overview

Simulations were designed in Python 2.7.13 as fully object-based models. A physicochemical

metric space of odor quality (Q-space) was defined, into which odor ligands and the chemore-

ceptive fields of olfactory receptors were deployed. Realistic odorants comprised lists of odor

ligands at characteristic concentration ratios. Ligands interacted with receptors according to

standard pharmacological binding and activation laws and competitive interactions. Receptors

were activated according to the outcome of their interactions with multiple ligands of varying

affinities and efficacies. Glomeruli receiving input from single receptor types (SRT, the mam-

malian wildtype condition for the main olfactory bulb) directly inherited the activation level of

their associated receptor type, whereas glomeruli receiving input from multiple receptor types

(MRT, a condition exhibited by Kir2.1 transgenic mice; [46]) inherited a weighted average of

their constituent receptors’ activation levels. The discrimination sensitivity–the theoretical

capacity of a network to discriminate small changes in odor quality based on particular odor-

ants of interest, analogous to a least-discriminable difference measure–was measured and con-

stitutes the primary output of interest. Receptor occupancy and receptor activation levels also

were routinely measured. In the experiments described in this paper, odorants were based on

lists of randomly placed ligands drawn from a uniform distribution across Q-space, such that

the findings can be considered general. (The species-specific allocation of receptors to particu-

lar regions of Q-space at the expense of others–a foundation of natural scenes adaptation in

olfaction–is a major motivation for development of this model; however, we here omit consid-

eration of such heterogeneous Q-spaces in favor of first establishing general principles). Bind-

ing kinetics were omitted from the model (i.e., considered to be fast); detailed kinetic models

of ligand-receptor interactions in olfaction have been developed by Rospars and colleagues;

e.g., [47–49]. The objects and stages of the present model are described in detail below.

PLOS COMPUTATIONAL BIOLOGY Physicochemical model of odor sampling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009054 June 11, 2021 4 / 39

https://doi.org/10.1371/journal.pcbi.1009054


Physicochemical model objects

Q-space objects. We first defined a physicochemical metric space object referred to as an

odor “quality space”, or Q-space. Q-spaces were programmatically defined as q-dimensional

metric spaces with arbitrary, finite ranges in each dimension. Within Q-space, proximity

denotes unspecified similarities in the binding properties of chemical stimuli to receptors.

Proximity also correlates locally with similarity in the naïve perceptual quality of odorants, but

imperfectly so, as the distribution of receptors within Q-space strongly influences the per-

ceived similarity of odorant inputs (as modeled by the transformation of the afferent represen-

tation into R-space; see Discussion). Moreover, other post-sampling factors such as learning

and neuromodulation also affect perceptual quality in ways that are beyond the scope of this

physicochemical model to address [12]. Q-space objects comprised lists of q tuples, each defin-

ing the range (minimum and maximum values) of one dimension of the space. The units of Q-

space (q-units) are arbitrary, but the scale is shared among many model parameters such as the

standard deviations of receptor Gaussians and the vector amplitude of dN (described below).

Receptor objects. Primary olfactory receptor (OR) objects were modeled as pairs of q-

dimensional Gaussian distributions, both centered on the same point within a Q-space of

dimension q (Fig 1). These two Gaussians defined the chemoreceptive field of the correspond-

ing OR. Each of the pair of Gaussians exhibited independent, randomly-determined standard

deviations in each dimension, and the profile of standard deviations across dimensions also

differed between the two Gaussians of each pair. The first Gaussian defined in each OR object

was an affinity Gaussian of dimensionality q, incorporating one q-dimensional coordinate

defining the mean and a list of q independently-determined standard deviations. These objects

also defined heuristic scalar values for the “strongest possible affinity” (at the mean/peak, in

molar) and the “weakest possible affinity” (at the Gaussian asymptote). For simplicity in the

present study, these values, defining the range of possible ligand-receptor dissociation con-

stants Kd, were kept constant across all ORs, from 1e-08 M at the peak to 1e+02 M at the

asymptote, except when specified otherwise. Second, a separate efficacy Gaussian was centered

at the same point as the affinity Gaussian; its peak denoted a full agonist (1, unitless) and the

asymptote a full antagonist (limit = 0). Differences in the standard deviations between the

affinity and efficacy Gaussians of an OR across q dimensions consequently provided points in

Q-space corresponding to all forms of competitive ligand-receptor interactions with that OR

(e.g., strong agonist, weak agonist, partial agonist, strong antagonist; Fig 1), and ensured that

small changes in molecular features (as modeled by a 0.01 q-unit quality translation dN in q
dimensions by a ligand point) could have either minor or major effects on a ligand’s binding

properties to a given receptor.

This framework derives from the assumption that there exists a theoretical best ligand

(strong affinity, efficacy of unity) for activating any given receptor. Any structural deviations

from this theoretical optimum reduce affinity, efficacy, or both; accordingly, the peak affinity

and peak efficacy coincide at the same point. That said, the underlying theoretical implication

that agonists are, on average, slightly stronger than antagonists does not measurably affect

model outcomes given the relative sparsity of ligand point deployment in Q-space. (Neverthe-

less, this simplifying assumption can be eliminated at the cost of adding a q-dimensional offset

distance parameter between the peaks of the affinity and efficacy Gaussians to the receptor

object). Deviations that reduce affinity but maintain efficacy create weak agonists; deviations

that reduce efficacy but maintain affinity create strong partial agonists and antagonists. The

number of independent ways in which a ligand can be so modified is reflected in the

dimensionality of Q-space. The relative likelihoods of weak and strong agonists and antago-

nists, and the amplitudes of the quality transitions dN necessary to produce them, are arbitrary
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Ψ

Fig 1. Model parameterization. A. Illustration of how the relationship between the affinity and efficacy Gaussians generates diverse

ligand-receptor binding and activation properties. Red (affinity) and blue (efficacy) ellipses denote the contour line marking two

standard deviations (2.0 σ) from the Gaussian peak in a two-dimensional Q-space. 1, Strong agonist (high affinity, high efficacy). 2,

Weak agonist (low affinity, high efficacy). 3, Partial agonist or antagonist (high affinity, low efficacy). 4, Weakly binding or

insensitive (low affinity, low efficacy). B. Illustrations of receptor and ligand distributions randomly deployed from uniform

distributions into two-dimensional Q-spaces of different sizes. Pairs of Gaussian contour lines (1.5 σ) centered on the same point

denote the affinity (red) and efficacy (blue) Gaussians of individual receptors. Receptor standard deviations were drawn from

uniform distributions of 0.5 to 1.5 q-units (affinity) and 0.05 to 1.0 q-units (efficacy; standard parameters). Black dots denote ligand

points. Top left, A [4,4] Q-space containing four receptors and ten ligand points. Top right, A [4,4] Q-space containing 30 receptors

and 40 ligand points. Bottom left, A [10,10] Q-space containing 30 receptors and 40 ligand points. Bottom right, A [30,30] Q-space

containing 30 receptors and 40 ligand points. C. Effects of affinity Gaussian breadth on receptor occupancy. In a one-dimensional

Q-space of range [4] containing a single receptor centered at location 2.0, with an affinity Gaussian exhibiting a standard deviation

of 0.5, 1, 1.5, or 2 q-units and a fixed efficacy of unity, the receptor occupancy was calculated for 400 points distributed along the

abscissa. Peak affinity was Kd = 10−8 M, asymptotic affinity was Kd = 10+2 M, and ligand concentration was 10−5 M (standard

parameters). Occupancy fell off rapidly between about 0.7 and 1.0 standard deviations from the mean of the underlying affinity

Gaussian. Bracketed numbers denote the standard deviation of the affinity Gaussian. D. Effects of the breadths of receptor efficacy

Gaussians. Standard deviations of 0.1, 0.5, 1.0, 2.0, and 3.0 q-units are illustrated. Efficacy fell off most rapidly between roughly 0.5

and 2.0 standard deviations from the mean of the efficacy Gaussian. Bracketed numbers denote the standard deviation of the

efficacy Gaussian. E. Heatmaps depicting d �C
�
values per location in Q-space, with three receptors deployed and efficacy held at
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properties reflected in the relative standard deviations of the affinity and efficacy Gaussians

across q dimensions.

Any number of ORs can be deployed into a given Q-space (Fig 1B). An olfactory epithelium
object (aka receptor complement) was defined as a list of k receptor objects, where k = the num-

ber of receptors deployed in the model. A given olfactory epithelium object is considered char-

acteristic of a particular animal species or population expressing a common complement of

odorant receptors. Unless stated otherwise, simulations herein deploy 30 ORs into Q-space

(i.e., k = 30).

Ligand objects. Ligand objects consisted of a q-dimensional point coordinate (ligand
point) deployed in a Q-space of dimensionality q, along with a concentration parameter in

molar (M) specifying the concentration of the odorant molecule presenting the ligand. Mono-

and multi-molecular odorants, odorant mixtures, and complex odorscenes all comprised sim-

ple lists of ligand objects (see Discussion). To model a single type of odorant molecule (mono-

molecular odorant) presenting multiple ligands, each ligand object associated with that

odorant would have the same concentration value. To vary concentration ratios in binary odor

mixtures within the model, the concentrations of the ligands comprising each of the two com-

ponent odorants would be covaried. To model a natural odor source comprising multiple

molecular species, the ligands corresponding to the different component species would be

modeled as different concentrations in characteristic ratios. Increasing ligand concentration

both increases the occupancy of well-tuned receptors, up to a maximum asymptotic level, and

recruits additional, marginally-tuned receptors into the activated ensemble [50,51]. In the

present simulations, for simplicity, all odorant concentrations were held constant at 1e-05 M.

Small changes in the quality of a ligand were modeled as a 0.01 q-unit, randomly-oriented

translation dn of that ligand point in q dimensions. In the present analyses, small changes in

the quality of a natural odor or entire odorscene, denoted as dN, were modeled as small, ran-

domly- and independently-oriented translations of all constituent ligand points. For simplic-

ity, in the present simulations, all quality translations dN were of a constant magnitude,

applied to all existing ligand points, and averaged over multiple independent random direc-

tions of translation.

Odorscene objects. Odor stimuli–whether comprising monomolecular odorants, more

complex (multimolecular) odorants, or rich mixtures of odorants originating from multiple

sources–were modeled as odorscene objects, which consisted of simple lists of ligand objects.

Notably, odorants–even monomolecular odorants–can comprise multiple ligands; that is, dif-

ferent facets of an odorant molecule can separately interact with receptors. The interaction of a

given odorant molecule with more than one receptor therefore arises by two means: (1) the

presentation of multiple ligands by that molecule (separate ligand points in Q-space each inter-

acting with receptor Gaussians) as well as (2) the interactions of any single ligand with more

than one receptor (multiple receptor affinity Gaussians overlapping with a single ligand point

in Q-space). Ligand object lists were additive in the sense that an odor mixture or complex

scene would be defined by the simple concatenation of the ligand lists of its components.

Because a given olfactory stimulus contains no a priori information regarding whether it com-

prises a monomolecular odorant, a complex odorant arising from a single source, or a complex

unity. Affinity Gaussians are depicted as red ellipses denoting 1.5 standard deviations (σ) on the affinity Gaussian function. Hot

areas depicting higher discrimination capacities d �C
�
are clustered inside those ellipses, corresponding to the region with the steepest

Gaussian slope (roughly 0.5 to 1.5 σ). Q-space locations served by two receptors exhibit correspondingly higher d �C
�
values at the

intersections, and narrowly tuned receptors with correspondingly steeper Gaussians exhibit higher d �C
�
values at the cost of breadth.

F. As E, with the addition of efficacy Gaussians (blue ellipses; 1.5 σ depicted). Scale bar on the right applies to both panels E and F.

https://doi.org/10.1371/journal.pcbi.1009054.g001
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mixture arising from multiple natural odor sources, the list of ligands presented as stimulus

input to the model was termed an odorscene (Fig 1B). Specifically, the term is agnostic to

whether that odorscene arises from a single or multiple sources, or to whether any subcompo-

nent within it may have acquired associative meaning–it simply refers to “the complement of

ligands interacting with the nasal epithelium”. A meaningful odor–such as orange or coffee–is

referred to herein as a source.

Glomerulus objects. Glomerulus objects were defined to express the activation levels of

olfactory bulb glomeruli when a given olfactory epithelium was stimulated with a given odors-

cene within a given Q-space. In the olfactory system, glomeruli are discrete regions of the

olfactory bulb consisting largely of the axonal arbors of large, convergent populations of pri-

mary olfactory sensory neurons (OSNs) that normally each express the same type of OR. The

number of glomeruli, therefore, corresponds to the number of ORs expressed by a given spe-

cies of animal (though they may be duplicated; e.g., in mice, axons from the OSN population

expressing a given OR usually converge onto two separate glomeruli located in the medial and

lateral regions of each olfactory bulb; [52,53]). In addition to activation levels, glomerulus

objects consisted of a list of receptor objects and the proportional connectivity from each, as

well as (X,Y) coordinates for the glomerulus’ position within the glomerular array on the olfac-

tory bulb surface (used to organize any proximity-dependent computations of interest). In the

present study, the number of glomeruli in the glomerular array was always the same as the

number of receptors. In models of wildtype/SRT (single receptor type) mice, the list of recep-

tor objects for each glomerulus object included only the primary receptor and a proportional

connectivity of 1.0, whereas in models of MRT transgenic mice, in which multiple receptor

types converge onto common glomeruli [46], eight secondary receptors in addition to the pri-

mary receptor contributed some level of input to each glomerulus.

Ligand-receptor binding

Ligand binding to receptors was determined by the intersection of each ligand point with each

affinity Gaussian within Q-space; specifically, the value of the affinity Gaussian at each such

intersection defined a dissociation constant (Kd) for that pairwise interaction. Hence, a given

ligand could bind to any number of receptors with independently determined affinities, and a

given receptor could interact with any number of different ligands. Receptor occupancy (ϕ)

for each receptor then was calculated via standard pharmacological equations based on the

concentration parameter of the ligand object. Specifically, for a single receptor/single ligand

system:

� ¼
1

1þ
KdA
½A�

� �m ð1Þ

where [A] denotes the concentration of ligand A in molar and m is the Hill coefficient (coop-

erativity). The partial occupancy (ϕ@) of any given receptor by any particular ligand in the pres-

ence of multiple competing ligands also was calculated using standard methods:

�@A ¼
1

1þ KdA
½A�

� �
� 1þ

½B�
KdB

� �
þ

½C�
KdC

� �
þ . . .

� �� �m ð2Þ

where A is the ligand for which partial occupancy is being calculated, and B and C are two

other competing ligands; for each ligand species X, [X] denotes the concentration and KdX its

dissociation constant with the receptor in question. This simplified equation assumes that all

competing ligands exhibit the same cooperativity m when binding to the receptor, and neglects
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noncompetitive cobinding effects that may alter ligand affinities [54]. The total occupancy ϕ of

a receptor in the presence of multiple ligands was calculated as the sum of all partial

occupancies.

The value of the Hill coefficient m in isolated, deciliated OSNs has been estimated from 1.4

to over 4.4, based on physiological activation as opposed to binding [55]. Higher values result

in sharper, narrower ligand-receptor activation curves. Populations of convergent OSNs, in

contrast, reveal substantially lower functional Hill coefficients for collective activity at the glo-

merular level (Hill equivalent; [56]; i.e., broader dose-response curves [57–60]. While the

model was designed to enable consideration of these parameters, in the present study the Hill

coefficient was set to 1.0 (no cooperativity).

Receptor activation

The contribution to receptor activation by each competing ligand was determined by ligand-

receptor efficacy. Specifically, the efficacy of each ligand-receptor interaction was defined by

the value of a receptor’s efficacy Gaussian at its intersection with the ligand point. For example,

a ligand point that, owing to differences in the affinity and efficacy standard deviations, inter-

sected with a high affinity value (low dissociation constant) and a high efficacy value would

correspond to a strong agonist. Intersection with a low affinity and a high efficacy would

denote a weak agonist, intersection with a moderate to high affinity and a moderate efficacy

would constitute a partial agonist, whereas intersection with a high affinity and very low effi-

cacy would correspond to a strong competitive antagonist. Importantly, the overall relative

probabilities of agonistic and antagonistic interactions could be determined by varying the

ranges of the distributions of values from which affinity and efficacy standard deviations were

drawn (Figs 1A, 1C, 1D and 2). For example, if affinity standard deviations were usually func-

tionally narrower than efficacy standard deviations, then the prevalence of strongly antagonis-

tic ligand-receptor interactions would be correspondingly low. The relationship of receptor

activation levels to the location of ligand points in Q-space defines the tuning curves, aka che-

moreceptive fields, of those olfactory receptors; i.e., OR tuning curves are a function of both

the affinity and efficacy Gaussians.

Discrimination sensitivity calculations

In order to measure the resolution of maximum odor discrimination afforded by a given

receptor complement within a given environment, we developed a metric for least discrimina-

ble differences modeled after principles derived from the spectral overlap of cone sensitivities

in the retina [61] and orientation tuning in primary visual cortex (V1; [62–64]). Specifically,

the most sensitive odor quality discrimination thresholds occur where the q-dimensional OR

tuning curves are steepest, rather than where they are most absolutely sensitive (Fig 1E and

1F). Multiple ORs that are sensitive to the same ligand further improve discrimination by con-

tributing additional certainty (see Results).
We measured the discrimination sensitivity of a given receptor complement for a small

change in the quality of a single ligand as the square root of the sum of squared deviations

across all OR responses to a small, arbitrary translation dN of that ligand point in Q-space.

Specifically, for a small dN, every OR generates a corresponding dKd, where Kd is the ampli-

tude of that receptor’s affinity Gaussian at its intersection with the ligand point (i.e., the

ligand-receptor dissociation constant, in molar). That is, dKd represents the change in ligand-

receptor binding affinity at one OR arising from the small transformation in quality dN of a

single odor ligand.
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Because the direction of a small translation vector dN in any one dimension of Q-space is

arbitrary, and hence may be aligned with the steepest direction of the slope of a given recep-

tor’s affinity Gaussian, or orthogonal to it (hence contributing zero dKd even if the affinity

Gaussian is steep), or anywhere in between, a reliable estimate of the average discrimination

sensitivity of a given OR complement for a given odorscene requires averaging across a num-

ber of random vectors dN from that odorscene. Additionally, as a given receptor complement

Fig 2. Depictions of the joint effects of receptor affinity and efficacy Gaussians on receptor activation. In each panel, a single receptor is

deployed into the center of a two-dimensional [4,4] Q-space. The affinity Gaussian standard deviation (grey shaded circle) is uniformly 2.0 q-

units in all cases, whereas the standard deviations of the efficacy Gaussian are systematically varied between 1.0, 2.0, and 3.0 q-units in each

dimension (except in panel A, where efficacy is uniformly 1.0). A single ligand point was systematically varied across these Q-spaces in

increments of 0.1 q-units (1600 points total per Q-space). The activation level of the receptor based on each of these 1600 ligands was

calculated, and the results displayed as a histogram (grey bars; left ordinate). Broader efficacy Gaussians pull the distributions to the right,

yielding higher probabilities of stronger receptor activation. Each of the ligand points also corresponded to an efficacy value; these values were

averaged among all of the points within each of the ten bins of the histogram and plotted (black curve; right ordinate). This reveals, for example,

that the weakest activations in panel B are attributable to low efficacy (antagonist ligands), whereas comparably weak activations in panel K are

associated with higher efficacy (agonist) interactions and hence their weakness must be attributable to low-affinity interactions (i.e., weak

agonists).

https://doi.org/10.1371/journal.pcbi.1009054.g002
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will be better tuned to some odorscenes than to others, a reliable estimate of its discrimination

sensitivity must be averaged across multiple randomized odorscenes. Figures depicting simula-

tion results in this study are based on averages across 200 randomly determined odorscenes

(each with M ligand points drawn from a uniform distribution across Q-space) with 10 ran-

dom dN repeats per odorscene, sampled by a complement of 30 receptors randomly distrib-

uted within Q-space, unless stated otherwise.

Changes in ligand-receptor dissociation constants alone, however, do not fully determine

discrimination sensitivity. First, discrimination across an odor quality difference dN is

impaired when the odorant concentration is very low or high (saturating) compared to the dis-

sociation constant, because small changes in the dissociation constant under these circum-

stances will have negligible effects on ligand-receptor binding and OR activation. Second,

changes in ligand-receptor efficacy also can substantially influence the impact of small transla-

tions dN on OR activation. Third, odor sources generally comprise multiple ligands–poten-

tially large numbers of ligands–and whereas multiple ligands may improve the discrimination

of small quality changes by providing additional information, this will not always be the case.

Additional ligands may saturate ORs, and, even in the absence of saturation, odor ligands that

interact with the same receptor can interfere with one another; for example, increasing the

affinities of an OR for both an agonist ligand and an antagonist ligand would generate a

smaller-magnitude net change in receptor activation than would be the case for either ligand

alone. To take all of these factors into account, we quantified the theoretical discrimination

sensitivity of a receptor complement for an odorscene with M ligands, based on lists of length

M of small randomly-oriented translations dN, as follows.

1. For each receptor object,

a. For each ligand point in the odorscene,

i. Apply the dN for that ligand point and determine the dissociation constant Kd (inter-

section with the affinity Gaussian) for both states (i.e., before and after dN translation).

b. From these Kd values and the corresponding ligand concentrations, calculate the follow-

ing denominator term D for both states:

D ¼ ½A�
KdA

� �

þ
½B�
KdB

� �

þ
½C�
KdC

� �

þ . . .

� �

ð3Þ

where D is the sum of [X]/KdX for all ligands X.

c. For each ligand point in the odorscene,

i. Calculate the partial occupancy ϕ@,A of the current receptor by the current ligand A

(using Eq (2) substituted with the denominator term D from Eq (3)) for both states:

�@;A ¼
1

1þ KdA
½A�

� �
� 1þ D � ½A�

KdA

� �� �� �m ð4Þ

ii. Determine the efficacy e of the ligand-receptor interaction for both states (intersec-

tion with the efficacy Gaussian)
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iii. Calculate the partial activation ε@,A of the current receptor R by the current ligand A,

for both states:

ε@;A ¼ �@;A � eA ð5Þ

where eA denotes the efficacy of the interaction of R and A. Importantly, while all

ligands will contribute a nonnegative partial activation to each receptor, strong

antagonists (for example) will reduce the partial occupancy of competing agonists,

thereby reducing the level of receptor activation below that which would have been

achieved in their absence.

d. Calculate the total receptor occupancy ϕ for the current receptor (i.e., the sum of partial

occupancies for all ligand points), separately for both states.

e. Calculate the total receptor activation ε for the current receptor (sum of partial activa-

tions for all ligand points), separately for both states.

f. The change in total receptor activation dε in response to the quality translation dN is,

therefore

dε ¼ εafter � εbefore ð6Þ

This value will be negative if the translation dN reduces net receptor activation.

g. The square of this value, dε2, is the positive, squared contribution of the current receptor

to systemwide discrimination sensitivity.

2. The total discrimination sensitivity dC of a given receptor complement, for a given odors-

cene, in a given Q-space, based on a single set of ligand point translations dN, is therefore

calculated as:

dC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðdεÞ2
q

ð7Þ

Note that dC� 0 in regions of Q-space in which no receptors are deployed (approximately
zero because the long Gaussian tails of all receptors extend throughout the entirety of Q-

space).

3. To characterize the discrimination sensitivity of a given receptor complement for a given

statistical distribution of odorscenes, a mean discrimination sensitivity d �C was calculated

across 200 different M-ligand odorscenes drawn from a common distribution and 10 ran-

domly determined translations dN of each odorscene. The mean discrimination sensitivity

d �C often is presented as a function of the number of ligands M per odorscene.

The expected discrimination sensitivity d �Ψ
The mean discrimination sensitivity d �C depends on receptor properties, numbers, and distri-

butions as well as on odorscene statistics and environmental conditions. For example, nonuni-

form receptor deployments within Q-space would denote species-specific receptor

complements tuned to favor the identification and discrimination of certain odor qualities at

the expense of others, balancing improvements in discrimination sensitivity for favored types

of odors against a reduced capacity to detect a wider range of odorants. In the present analysis,

however, odor ligand and receptor deployments both were drawn from uniform distributions
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in order to establish the general principles by which olfactory discrimination sensitivity arises

from basic pharmacological laws. Consequently, the expected discrimination sensitivity for a

random odorant quality change dN is meaningfully equal to the mean discrimination

sensitivity.

The relationship between affinity and efficacy Gaussian functions

The model’s capacity to generate diverse ligand-receptor interactions (strong agonist, weak

agonist, strong antagonist, etc.; Fig 1A and 1B) depends on selecting appropriately scaled stan-

dard deviations for the affinity and efficacy Gaussians in each of the q dimensions of Q-space.

To determine these scales, we first calculated how the breadth of an affinity Gaussian corre-

sponded to the breadth of a receptor occupancy function across Q-space. A single ligand point

was deployed within a one-dimensional Q-space of range [4] expressing a single receptor with

mean at location 2.0 and an affinity SD of 0.5, 1.0, 1.5, or 2.0 q-units. Efficacy was fixed at

unity. The location of the ligand point was systematically varied from location 0 to 4 in incre-

ments of 0.01 q-units and the occupancy calculated at each location. In agreement with direct

calculations (not shown), occupancy fell off rapidly between about 0.7 and 1.0 standard devia-

tions from the mean of the affinity Gaussian (Fig 1C). In contrast, efficacy dropped off with

distance as a direct function of the Gaussian, with most of the decline occurring between

roughly 0.5 and 2.0 SDs from the mean (Fig 1D).

We then built a two-dimensional Q-space of range [4,4], deployed three receptors into it,

varied the location of a single ligand point across the entire space in increments of 0.01 q-

units, and calculated the discrimination capacity d �C at each location. As expected, when effi-

cacy was fixed at unity, higher values of d �C were calculated where the affinity Gaussian was

steepest (roughly between 0.5 and 1.5 σ). The same relationship also has been observed for

color discrimination performance in the human eye [65–67]. Redundant receptors increased

the total d �C value at their intersections, and narrower chemoreceptive fields also generated

correspondingly steeper Gaussian curves, thereby yielding higher d �C values (Fig 1E). When

efficacy was permitted to vary, these functions further limited the regions exhibiting higher

d �C values (Fig 1F).

To demonstrate the effects of varying the standard deviations of affinity and efficacy Gaus-

sians to generate diverse ligand-receptor interactions, we systematically built a set of two-

dimensional Q-spaces of size [4,4], each containing one receptor comprised of an affinity

Gaussian with a standard deviation of 2.0 in both dimensions (Fig 2; grey shaded circles) and

one of a variety of efficacy Gaussians with standard deviations of 0.5, 1.0, 2.0, or 3.0 q-units in

each dimension (Fig 2; red ellipses). The affinity SD of 2.0 was chosen because it fills the entire

Q-space with occupancies above 0.1, with occupancy falling off most sharply between 1.4 and

2.0 q-units from the mean (Fig 1C, solid curve). We measured the activation ε of each receptor

in response to stimulation with a single ligand point, the location of which was varied system-

atically across the entire two-dimensional Q-space in increments of 0.1 q-units; accordingly,

1600 activation values were plotted for each panel. For each receptor, the activation levels

evoked by each of these ligand point locations were plotted together as a histogram (Fig 2; his-
tograms). Notably, particularly when modeling stimulation with reliable agonists (e.g., when

efficacy = 1.0; Fig 2A, or when the efficacy Gaussian was relatively broad when compared with

the affinity Gaussian; e.g., Fig 2H, 2J and 2K), the distribution of receptor activation levels was

noticeably bimodal. This straightforward result of interacting affinity and efficacy properties at

the ligand-receptor interaction may contribute to a reported bimodality in mitral cell response

properties that has been attributed to intraglomerular circuit operations [68].
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The mean efficacy of all of the ligand-receptor interactions associated with each bin of each

histogram then was calculated and plotted separately (Fig 2; curves). This demonstrates, for

example, that the weakest receptor activations (leftmost histogram bin) in Fig 2K were primarily

attributable to low-affinity interactions (weakly-binding agonists with high efficacy), whereas

those in Fig 2B were largely attributable to low-efficacy interactions (antagonists). More gener-

ally, this figure shows that a balanced heterogeneity in affinity and efficacy standard deviations

(e.g., Fig 2F and 2H) generates diverse combinations of strong and weak agonist and antagonist

interactions with receptors (Fig 1A). In subsequent simulations, except where otherwise speci-

fied, the affinity and efficacy standard deviations in each dimension were (separately) randomly

drawn from uniformly distributed ranges rather than directly determined.

Standard simulation parameters

We first characterized the physicochemical sampling properties of olfactory receptor comple-

ments with diverse properties. In each case, we modeled odor quality within a Q-space of a

specified dimensionality q and range in each dimension. Thirty receptors were deployed into

two-dimensional Q-spaces unless stated otherwise. All affinity Gaussians were defined with a

peak of 1e-08 M and an asymptote of 1e+02 M except where specified otherwise. The standard

deviations of each affinity Gaussian in each dimension of Q-space were separately drawn from

a uniform distribution ranging from 0.5 to 1.5 q-units, unless specified otherwise. Odorscenes

ranged from 1 to 400 ligands (forming the abscissa of many plots); all ligands were presented

at concentrations of 1e-05 M. The above parameters are considered standard and were utilized

in all simulations depicted, except when specified otherwise.

Receptors’ efficacy Gaussians, when used, were centered on the same point in Q-space as

the corresponding affinity Gaussian for that receptor. As described above, the ranges of stan-

dard deviations of the efficacy Gaussians were tuned against those of the affinity Gaussians in

order to generate an appropriately diverse complement of ligand-receptor interactions. Based

on this tuning, a standard range was determined from which the standard deviations for each

dimension of receptor efficacy Gaussians were drawn. This standard range (0.05 to 1.0 q-

units) was applied to all subsequent simulations except where specified otherwise. The peak of

the efficacy Gaussian was always 1.0, and the asymptote always 0.0.

Unless stated otherwise, all plots were averaged across 200 odorscenes and 10 repeated dN
translations per odorscene. In all changes in the quality of an odorscene performed herein,

every ligand was translated by 0.01 q-units in a random direction. All receptors were deployed

into locations in Q-space according to random sampling from a uniform distribution across

the entire space; nonuniform sampling of Q-spaces was not performed.

Animals

Mice carrying OMP-IRES-tTA:tetO-Kir2.1-IRES-tauLacZ alleles (Kir2.1 mice; [46,69]) and

wildtype controls were used as subjects. Kir2.1 mice were weaned on P21 and then maintained

on a 20 mg/kg doxycycline-inclusive diet for at least six weeks prior to behavioral testing to

induce the multiple receptor type (MRT) phenotype. Littermate control animals are referred

to as “single-receptor type” (SRT) mice. All animals were maintained in the Stowers Institute

Lab Animal Services Facility on a 12:12 light cycle, and provided with food and water ad libi-
tum except as described for two-alternative forced choice experiments. All behavioral experi-

ments were carried out during the animals’ dark cycle under red or infrared illumination. All

experimental protocols were approved by the Stowers Institute Institutional Animal Care and

Use Committee (protocol 2019–102) and in compliance with the NIH Guide for the Care and

Use of Laboratory Animals.
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Odorants

Monomolecular odorants were purchased from Sigma-Aldrich and diluted in mineral oil to

the desired concentration as described below. Maple and lemon flavors were purchased from

the Frontier Co-op (frontiercoop.com; cat. #23081 and #23071) and were not diluted in the liq-

uid phase. Odor delivery was controlled by an automated olfactometer with custom LabVIEW

software (National Instruments) as described previously [26,70]. All odorants presented were

diluted tenfold in the gas phase by the olfactometer in addition to liquid-phase dilutions as

noted. All mixtures were prepared in the liquid phase. Odorants are listed in Table 1.

Cross-habituation task

Cross-habituation tests were performed in 2–4 month old mice as previously described [70].

Each experimental group contained 6–14 animals. Each animal was tested with a total of 4

odors (2 pairs) in 2 separate experiments with at least one week between tests. Testing was per-

formed in a 20 x 20 cm chamber to which the animals were first habituated for 30 minutes.

Odorants were delivered by the olfactometer at 100 ml/min into a nose cone positioned on a

side wall at 5 cm height. A vacuum tube connected to the opposite wall of the nose cone served

to remove residual odors after odor delivery. Monomolecular odorants were diluted into min-

eral oil at 1:1000 (v/v), whereas lemon/maple flavors were not diluted in the liquid phase; for

all odorants, a 10 ml/min air flow through the odorant-containing vials was mixed into 90 ml/

min carrier air to yield a final nominal dilution of 10−4 saturated vapor (s.v.) for monomolecu-

lar odorants and 0.1 s.v. for lemon/maple flavors. Animals’ investigation of the odor source

was registered by infrared beam breaking events and recorded by the same custom software

that controlled the olfactometer.

In each trial, odorants were delivered for 1 minute followed by 4 minutes of carrier air.

Mice first were habituated to the protocol by delivering eight trials of plain mineral oil, after

which the first odorant of the pair (habituated odor) was presented for 5 trials and then the

second odorant of the pair (test odor) was presented for 3–5 trials. During each trial, the dura-

tion of the animals’ investigation of the odor port was recorded. Repeated identical trials led to

systematically reduced investigation (habituation), whereas perceived changes in the delivered

odor restored the investigative response. Presentation of odorants perceived as similar to the

habituated odor (i.e., not discriminated) evoke no increase in investigation time [1]. A normal-

ized port investigation time (NPI) value was calculated for each trial by dividing the

Table 1. List of odorants. Odorants utilized in behavioral experiments along with their CAS numbers. The four odorant pairs used for cross-habituation studies (at 70:30

vs 30:70 mixture ratios; Fig 8B) are identified with descriptive labels. Odorant pairs used in two-alternative forced choice tests (2AFC; Fig 8C and 8D) are identified with

their panel letter.

Odorants Behavior

Name CAS Number Cross-Habituation Pair 2AFC

Amyl acetate 628-63-7 AA/7L D

Heptanal 111-71-7 AA/7L D

Hexanal 66-25-1 6L/6E

2-Hexanone 591-78-6 6L/6E

2-Pentanone 107-87-9 5E/5L

Pentanal 110-62-3 5E/5L

Lemon flavor Le/Mp D

Maple flavor Le/Mp D

Methyl butyrate 623-42-7 C

Methyl valerate 624-24-8 C

https://doi.org/10.1371/journal.pcbi.1009054.t001

PLOS COMPUTATIONAL BIOLOGY Physicochemical model of odor sampling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009054 June 11, 2021 15 / 39

http://frontiercoop.com
https://doi.org/10.1371/journal.pcbi.1009054.t001
https://doi.org/10.1371/journal.pcbi.1009054


investigation time by the total baseline duration of odor port investigation during background

delivery. The perceptual distance between the two odorants of a pair then was assessed as the

difference in NPI (ΔNPI) between key trials. Specifically, ΔNPI was calculated as the difference

in investigation times between the fifth (last) presentation of the habituated odor (thab) and the

first presentation of the test odor (ttest), expressed as a percentage over the average baseline

exploration time during background air presentation.

ΔNPI ¼
ttest � thab
tbaseline

� 100

Values near zero therefore indicated a failure to discriminate between the paired odorants.

Two-alternative forced choice task (2AFC)

Separate cohorts of 2–4 month old mice were used for this paradigm, in which mice are moti-

vated to perform difficult odorant discriminations. In all cases, mice were water restricted (1.5

ml of water per day for one week) prior to training. Food was available ad libitum. Testing was

performed in a 20 x 20 cm chamber with three nose cones positioned at 5 cm height. Odorants

were delivered by the olfactometer at 100 ml/min into the central nose cone as described

above, whereas the flanking nose cones were used to deliver water rewards. Mice were condi-

tioned to nose poke into the central port, whereupon odorant delivery was triggered. Two

odorants were presented in this fashion in a pseudo-random sequence, and water reward was

contingent upon the animal correctly associating the odor with the appropriate water port. If

the animal chose the correct port, 0.05 ml water was released; otherwise, no water was given.

Animals were trained to criterion in the basic task (80% correct), before proceeding to the

experimental paradigm.

The odorant discrimination success rate (SR) was calculated as

SR ¼
PðAjaÞ þ PðBjbÞ

Ptotal
� 100

where P(A|a), P(B|b), and Ptotal were the number of pokes into water port A upon delivery of

odorant a, the number of pokes into water port B upon presentation of odorant b, and the

total number of nose pokes into the odor port, respectively. A success rate of 50% denotes

chance performance.

In the first 2AFC experiment, 11 MRT and 18 wildtype mice were trained to discriminate

the structurally and perceptually similar odorants methyl valerate and methyl butyrate at 1%

saturated vapor (10−2 s.v.). Upon reaching criterion, discrimination performance at the testing

concentration was assessed, after which the concentrations of both A and B were systematically

reduced for subsequent testing at three lower concentrations (10−3, 10−4, and 10−5 dilutions).

Liquid phase dilutions into mineral oil were 10% v/v for training and 1%, 0.1%, and 0.01% v/v

for testing, each followed by an additional 10% dilution in the gas phase (see Odorants above).

In a second set of 2AFC experiments, mice were trained to discriminate pairs of odorants

until achieving criterion (80%), after which they were systematically tested on their capacity to

discriminate increasingly similar mixtures of the odor pair. For example, after being trained to

discriminate amyl acetate from heptanal, 8 MRT and 8 wildtype mice then were tested on their

ability to discriminate a mixture of 90% amyl acetate / 10% heptanal from a mixture of 10%

amyl acetate / 90% heptanal, then 80:20 vs 20:80, and so on until reaching 50:50 vs 50:50, on

which they performed at chance. All odorants/mixtures were presented at 10−4 dilution (1000x

liquid phase dilution plus 10x gas phase dilution). This experiment was repeated in a separate
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cohort of 10 MRT and 10 wildtype mice using natural lemon and maple flavors, which were

diluted only in the gas phase (10−1 overall dilution).

Results

Effect of ligand number and receptor density on odor discriminability with

fixed full efficacy

We examined the relationship between the number of competing odorant ligands in an odors-

cene and the capacity of an olfactory system to discriminate small quality changes in that

odorscene. To also assess the effects of receptor density (i.e., the extent of receptive field overlap

in Q-space) without changing the absolute number of receptors, we constructed two-dimen-

sional Q-spaces of three different sizes and deployed 30 receptors into each; i.e., the smaller Q-

spaces exhibited higher receptor densities. Receptors were deployed randomly, with Gaussian

peak locations drawn from a uniform distribution across Q-space. The standard deviations in

each dimension of the affinity Gaussians were drawn from a uniform distribution ranging

from 0.5 to 1.5 q-units. Efficacy was fixed at 1.0 (i.e., there was no efficacy Gaussian). We plot-

ted the mean discrimination sensitivity d �C and mean receptor occupancy �� in each of these

three Q-spaces as functions of the number of ligand points in the odorscene (Fig 3A).

Notably, discrimination sensitivity did not monotonically increase along with the number

of ligands encountered in the environment, but rather peaked and then declined as the num-

ber of competing ligands continued to increase (Fig 3A, left panel). Indeed, at high densities of

ligands, all delivered at similar concentrations, discrimination sensitivity was reduced to near

zero; this reflects the phenomenon termed “olfactory white”, in which such mixtures become

increasingly perceptually similar to one another [27,45]. Reducing receptor density and recep-

tive field overlap by increasing the size of the Q-space moved the d �C peak progressively

towards higher numbers of ligands, indicating that the peak location was related to the number

of ligands that substantively interacted with each receptor. One straightforward interpretation

of this effect, all else being equal, is that higher numbers of interacting ligands result in higher

receptor occupancies, which eventually approach saturation (Fig 3A, middle panel). That is,

when the receptors are roughly half-occupied–i.e., near the steepest point in the underlying

ligand-receptor binding curves–a small change in ligand quality dN generates a robust differ-

ence d��. However, when those same receptors are nearly fully occupied by ligands, the same

small change in dN will generate a near-zero d��, much the same as when the receptors are

largely empty of ligands. This predicts that that the peak discrimination sensitivity d �C should

coincide with receptor half-occupancy under these conditions. We tested this across different

Q-space sizes, because the lower receptor densities presented by larger Q-spaces require a

larger number of ligands to reach the half-occupancy point of any given receptor. Under these

conditions, across a range of Q-space sizes, peak d �C corresponded to approximately the num-

ber of ligands that delivered half-occupancy (Fig 3A, right panel), though this principle did not

hold when efficacy was allowed to vary.

This relationship further suggested that lowering receptor occupancy values by reducing

ligand-receptor affinities across the board, all else being equal, also should move d �C peaks to

the right as they tracked the lower mean occupancies. To test this, we re-ran the simulations

with the affinities of all receptors reduced by two (Fig 3B) or three (Fig 3C) orders of magni-

tude; that is, the peak of receptors’ affinity Gaussians now denoted dissociation constants of

1e-06 M or 1e-05 M, respectively, whereas the asymptotes now denoted 1e+04 M or 1e+05 M,

respectively. With odor ligand concentrations still fixed at 1e-05 M, these modifications pro-

gressively reduced receptor occupancies (Fig 3B and 3C, middle panels), and demonstrated
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Fig 3. Effects of ligand and receptor densities on receptor activation/occupancy and discrimination capacity, while holding efficacy

constant at unity. Because efficacy was held at unity, receptor activation equals receptor occupancy. Thirty receptors were deployed into each of

three different Q-spaces in order to vary receptor density without changing the absolute number of receptors. A. Using the standard distribution

of affinity Gaussians (σ = [0.5, 1.5]) and an efficacy of unity, the mean discrimination capacity (left panel) and receptor occupancy (center panel)
were measured as functions of the number of ligands deployed in the space; the two functions also were plotted against one another (right
panel). B. As panel A, but with affinities uniformly reduced by two orders of magnitude (Gaussian peak affinity Kd = 10−6 M, asymptotic affinity
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that d �C peaks continued to correspond to conditions in which receptors were half-occupied

(Fig 3B; right panels). Notably, also, the peak discrimination sensitivity value was not strongly

affected by the first 100x reduction in ligand-receptor affinity (compare Fig 3A and 3B) or the

size of the Q-space, although the peak under these different conditions was reached under sub-

stantially different numbers of ligands. Further affinity reductions began to reduce peak dis-

crimination sensitivity (Fig 3C).

We then measured the effect of increasing the mean breadths (standard deviations) of the

affinity Gaussians in Q-space (cf. Fig 1C) while keeping constant the ranges of the distributions

from which these standard deviations were drawn (i.e., the variability). Specifically, we drew

the standard deviations in each dimension of Q-space uniformly from the range [1.5, 2.5] q-

units (Fig 3D) rather than from the standard range [0.5, 1.5] depicted in Fig 3A. The range of

affinities (dissociation constants) was maintained at standard values, consistent with Fig 3A;

i.e., each receptor had a peak dissociation constant of 1e-08 M and an asymptote of 1e+02 M.

This manipulation corresponded to increasing the breadths of olfactory receptors’ chemore-

ceptive fields, rendering them each responsive to a wider diversity of chemical ligands. Predict-

ably, our simulations showed that this reduction in the selectivity of receptors for odor quality

resulted in a substantial reduction in the aggregate discrimination sensitivity d �C (compare

ordinate values in Fig 3D, left panel to Fig 3A, left panel). This broadening of receptor chemo-

receptive fields also shifted d �C peaks to the left, corresponding to the increased levels of recep-

tor occupancy generated by this broader selectivity (Fig 3D, middle panel). Peak d �C values

again corresponded to conditions in which receptors were roughly half-occupied (Fig 3D,

right panel).
Finally, we investigated the effect of broadening the range of the distributions from which

affinity standard deviation values were drawn, to [0.5, 2.5] (Fig 3E), thereby encompassing the

full ranges underlying the results from both Fig 3A and 3D. The increased diversity of recep-

tive field breadths per se exhibited no specific effect; the occupancy and discrimination sensi-

tivity functions of Fig 3E were intermediate between those of Fig 3A and 3D in both breadths

and peak heights, as would be expected for a distribution with an intermediate mean.

Together, these results illustrate that discrimination sensitivity–for a specified number of

receptors and in the absence of efficacy considerations or post-transduction neuronal compu-

tations–is determined by the average ligand-receptor occupancy functions of the deployed

receptor complement. Specifically, discrimination sensitivity is highest under conditions in

which mean receptor occupancy �� is near 0.5, corresponding to the steepest point in the sig-

moidal ligand-receptor binding function.

Effects of different receptor efficacy Gaussian functions

One critical limitation of the above analyses is that they omit the influence of ligand-receptor

efficacy: the degree to which a ligand, once bound, will functionally activate the receptor. For

any receptor, high-affinity, low-efficacy ligands (antagonists) can be found that bind strongly

but do not open the receptor channel or activate its intracellular signaling cascade; also, many

additional ligands exist that are of intermediate affinity and/or efficacy for any given receptor.

Kd = 10+4 M). C. As A, but with affinities reduced by three orders of magnitude (Gaussian peak affinity Kd = 10−5 M, asymptotic affinity Kd =

10+5 M). D. As panel A, but with the uniform distribution from which affinity Gaussian standard deviations were selected shifted to higher

values, while retaining the same breadth of unity. E. As panel A, but with the uniform distribution from which affinity Gaussian standard

deviations were selected doubled in breadth, incorporating the full range used across panels A and D. Extending the range of affinity standard

deviations to higher values caused peak discrimination capacity to occur with lower numbers of ligands present (compare A to D, E), whereas

excluding lower affinity Gaussian standard deviations (i.e., excluding receptors with sharper tuning curves) substantially reduced peak

discrimination capacity (compare D to A, E).

https://doi.org/10.1371/journal.pcbi.1009054.g003
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We modeled the interaction between affinity and efficacy in Q-space by generating a second

Gaussian for each receptor that determined the efficacy of any given ligand point when associ-

ated with that receptor (see Methods). Briefly, the standard deviations of a receptor’s efficacy

Gaussian in each dimension were independent of each other and of the standard deviations of

the affinity Gaussian; the resulting diversity in the relationships between the two Gaussians

across Q-space generated regions for each receptor corresponding to the full range of possible

competitive ligand-receptor interactions (Figs 1 and 2). Specifically, the relative breadths of

the affinity and efficacy Gaussians determined the relative prevalence of agonistic versus antag-

onistic interactions in Q-space, and hence the relative likelihood of any given ligand being an

agonist, weak agonist, partial agonist, or antagonist of a given receptor. We analyzed this rela-

tionship by applying efficacy Gaussians of different standard deviations (Fig 4A, 4B and 4C) or

different randomized ranges of standard deviations (Fig 4D, 4E and 4F) to a set of receptors

with standard affinity Gaussian heights and breadths drawn from the standard distribution

(Fig 3A) to assess the impact of this set of variables.

For simplicity, we first looked at systems in which the standard deviation of the efficacy

Gaussian was fixed, and also identical across both dimensions of the two-dimensional Q-

space. Under standard affinity Gaussian parameters, efficacy Gaussians with standard devia-

tions of roughly 3 q-units or higher (Fig 1D) presented receptor activation functions that were

effectively identical to occupancy functions–i.e., ligands with appreciable dissociation con-

stants would always have efficacy values of near-unity, hence the receptor activation function

would closely track the occupancy function of Fig 3A, and the discrimination sensitivity func-

tions therefore would closely resemble those of Fig 3A. Narrowing the standard deviation of a

receptor’s efficacy Gaussian meant that a greater proportion of the ligand points exhibiting

some nontrivial affinity for that receptor (i.e., that were close to the Gaussian peak location in

Q-space) would be partial agonists or antagonists, as opposed to full (weak or strong) agonists.

As we reduced the standard deviations of the efficacy Gaussian, thereby increasing the

probability of partial or antagonistic interactions, receptor activation levels (Fig 4A, 4B and

4C, middle panels) were correspondingly reduced (below their occupancies; the receptor occu-
pancy function corresponding to all middle panels of Fig 4, which is independent of efficacy, is

depicted in Fig 3A, middle panel). The number of ligands underlying peak discrimination sen-

sitivity shifted to the right (Fig 4A, 4B and 4C, left panels), and no longer closely tracked either

the point of 50% occupancy (�� ¼ 0:5; Fig 4A, 4B and 4C, right panels, dotted curves) or the

point of 50% activation (�ε ¼ 0:5; Fig 4A, 4B and 4C, right panels, solid curves). Specifically, as

the probability of antagonistic interactions increased, the maximum activation levels of recep-

tors at full occupancy were correspondingly reduced (middle panels), as were the absolute

mean receptor activation levels at which peak discrimination sensitivity occurred (right panels,
solid curves). The latter effect occurred for at least two reasons. First, d �Cno longer declined to

near-zero at near-complete occupancy, as was the case with full agonists only (Fig 3), because a

quality translation dN now could result in agonists and antagonists replacing one another at

the binding site, potentially altering receptor activation levels substantially without requiring a

net change in receptor occupancy. Hence, the d �C peak with respect to receptor occupancy

moved to the right as the efficacy Gaussian narrowed (Fig 4B and 4C, right panel, dotted
curves). Second, the increasing probability of antagonistic interactions imposed a correspond-

ingly reduced maximum activation level on receptors; peak discrimination sensitivity reflected

a balance between bound agonists and antagonists such that a quality translation dN was prob-

abilistically optimized to impose the largest change in net activation per receptor. The d �C

peak with respect to receptor activation therefore shifted to the left as the efficacy Gaussian

narrowed (Fig 4B and 4C, right panel, solid curves).
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Notably, we found that the highest absolute discrimination sensitivities were attained with

narrower efficacy Gaussians–that is, ligand-receptor interactions with relatively high likeli-

hoods of competitive antagonism (Fig 4C, left panel). Primary olfactory receptors, like any

receptor, certainly have weak and antagonist ligands [32,33,37–39,41–44], though the proba-

bilities of each of these different ligand-receptor interactions for any given receptor comple-

ment clearly depend on the statistics of the odor environment in which it is deployed. In the

present simulations, the maximum peak discrimination sensitivity was observed when the effi-

cacy standard deviations were roughly 0.10 q-units (Fig 4C). Narrowing the efficacy Gaussian

below a standard deviation of 0.05 reduced the peak d �C value, as antagonism began to domi-

nate ligand-receptor interactions to the point of preventing appreciable receptor activation

(not shown).

We then tested ranges from which to draw the standard deviations of efficacy Gaussians, in

order to choose a standard range for subsequent simulations that would enable the system to

exhibit fully diverse responses to odorscenes (Fig 4D, 4E and 4F). Specifically, we compared

the full range of Gaussian breadths 0.05–1.0, from the value below which antagonism began to

reduce performance to a value where, in the smallest Q-space used, efficacy would not decline

below 0.1 (Fig 4D), to a more modest range in the center of this interesting region (Fig 4E),

and to a narrower range encompassing only the values associated with the highest discrimina-

tion sensitivities (Fig 4F), among others (not shown). Based on these results, in order to make

the fewest prior assumptions about the relative probabilities of agonistic and antagonistic

interactions, for subsequent simulations we standardized on the full range of efficacy Gaussian

standard deviations (0.05–1.0 q-units; Fig 4D). Individual standard deviations were drawn

from a uniform distribution of values across this range.

The size of the Q-space (determining receptor density) had no effect on the relationships

between d �C and receptor activation or occupancy (right panels); the curves depicted fully

overlapped, though those associated with the larger Q-spaces did not always extend to the

higher activation/occupancy values attained within the smaller Q-spaces given the maximum

of 400 ligands tested. Of course, a given activation or occupancy would be attained at a larger

absolute number of ligands in the larger Q-spaces, owing to the reduced overlap among recep-

tors in those larger spaces. Finally, and importantly, these simulations make clear that the peak

discrimination sensitivity exhibited by a given receptor complement does not generally occur

either at 50% receptor activation or 50% receptor occupancy, as might be assumed a priori.

Fig 4. Effects of ligand-receptor efficacy distributions on receptor activation and discrimination capacity. All panels use the

standard range of affinity Gaussian distributions (σ = [0.5, 1.5]; Fig 3A). Thirty receptors were deployed into each of three different

Q-spaces. A. Discrimination capacity (left panel) and receptor activation (center panel) as functions of the number of ligands

deployed when all efficacy Gaussians exhibit standard deviations of 1.0 q-units. The two functions also are plotted against one

another (right panel). B. As panel A, except that all efficacy Gaussians are narrowed, each exhibiting standard deviations of 0.3 q-

units. C. As panels A-B, except that all efficacy Gaussians are narrowed further, each exhibiting standard deviations of 0.1 q-units. D.

As panels A-C, except that the standard deviations of efficacy Gaussians are drawn randomly from a uniform distribution with range

[0.05, 1.0] q-units. This range is the standard parameter used to determine efficacy Gaussians unless specified otherwise. E. As panel

D, except that the standard deviations of efficacy Gaussians are drawn from a narrower range of [0.1, 0.5] q-units. In concert, these

results suggest that narrower efficacy Gaussians–that is, a higher prevalence of partial agonists and antagonists–increase the peak

discrimination capacity despite exhibiting substantially weaker receptor activation levels, while also moving the discrimination peaks

towards larger numbers of ligands. Additionally, as activation no longer directly tracks occupancy when efficacy varies, the

relationship between activation, occupancy, and discrimination capacity became more complex. Peak discrimination capacity

occurred at constant mean levels of receptor activation irrespective of receptor density per se (i.e., the size of the Q-space).

Additionally, as efficacy Gaussians were narrowed (higher antagonist prevalence), the peak discrimination capacity occurred at

correspondingly lower mean receptor activation levels. Finally, with a higher prevalence of agonists (broader efficacy Gaussians),

higher occupancies reduced discrimination capacity well below its peak (A, right panel), whereas a higher prevalence of antagonists

caused discrimination capacity to improve monotonically with higher receptor occupancy (C, right panel), presumably because

quality shifts under those conditions are more likely to measurably alter net receptor activation levels.

https://doi.org/10.1371/journal.pcbi.1009054.g004
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Effect of ligand number and receptor density on odor discriminability with

tuned affinity and efficacy ranges

Using the standard range selected for efficacy Gaussian standard deviations (0.05–1.0 q-units),

we reproduced the simulations of Fig 3 incorporating the effects of these efficacy differences

(Fig 5). The inclusion of diverse ligand-receptor efficacies modestly increased the peak dis-

crimination sensitivity d �C in all cases, and also deflected the d �C peaks toward higher numbers

of ligands. This pattern held across reduced-affinity conditions (Fig 5B and 5C), and also per-

sisted irrespective of increases in the mean breadths of the affinity Gaussians (Fig 5D) or

increases in the heterogeneity of the breadths of the affinity Gaussians (Fig 5E).

Effects of increased numbers of receptors and glomeruli

In contrast to the nonmonotonic effects of increased numbers of odor ligands, deploying addi-

tional receptors into Q-space reliably and monotonically improved the discrimination sensi-

tivity d �C of the receptor complement, with negligible effects on the number of ligands or

activation levels that were associated with peak discrimination sensitivity (Fig 6A, 6B and 6C;

compare to Fig 5A, in which 30 receptors were deployed). That is, a greater metabolic invest-

ment to increase the number of odorant receptor types (along with the corresponding glomer-

uli and inter- and post-glomerular circuitry) will always pay dividends if the additional

receptors interact with ethologically relevant odor ligands. Specifically, they will either improve

discrimination sensitivity (as shown here, if deployed so as to overlap with the receptive fields

of other receptors), increase the range of detectable odor ligands, or both. These results illus-

trate one of the reasons that olfactory systems exhibiting a greater diversity of odorant receptor

types are superior, all else being equal.

Effects of higher Q-space dimensionalities

The dimensionality of Q-space is an important factor in modeling the complex effects arising

from ligand-receptor interactions. Higher dimensionality rapidly increases the size of Q-

spaces, reducing receptor overlap, but also increases the number of different relationships

between affinity and efficacy Gaussian breadths that any one receptor can exhibit, and in prin-

ciple increases the number of ways in which different receptors’ chemoreceptive fields can dif-

fer from one another. However, higher dimensions also require considerably more

computational effort to converge on a clear mean outcome. Consequently, we asked whether,

for the purposes of the simple questions asked herein, whether the basic response profiles of

receptors deployed in higher-dimensional Q-spaces could be effectively replicated by receptors

deployed in larger, two-dimensional Q-spaces.

We tested this inductively, by mapping discrimination sensitivity, activation, and occu-

pancy functions in 2-, 3-, 4-, and 5-dimensional Q-spaces (spanning four q-units in each

dimension; Fig 7A), and comparing them to those derived from larger, two-dimensional Q-

spaces (Fig 7B). We found that many of the effects of higher-dimensional Q-spaces could be

closely replicated by a correspondingly enlarged two-dimensional Q-space (compare curves in

Fig 7A to 7B), echoing prior findings that representation accuracy by such metrics scales simi-

larly irrespective of the dimensionality of the stimulus space [64]. The prominent exceptions

to this general finding are the relationships between d �C and the mean receptor occupancy and

activation levels. While increasing the range of a Q-space does not systematically affect these

relationships (Fig 7B, right panel), increasing Q-space dimensionality reduced peak d �C and

substantially affected the mean activation levels at which the peak is obtained (Fig 7A, right
panel). One reason for this is that increasing Q-space dimensionality, but not range, reduces
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Fig 5. Effects of ligand and receptor densities on receptor activation/occupancy and discrimination capacity, while drawing receptor

efficacy Gaussian standard distributions from the standard range of σ = [0.05, 1.0] q-units. Thirty receptors were deployed into each of three

different Q-spaces. A. Using the standard distribution of affinity Gaussians (σ = [0.5, 1.5]), the mean discrimination capacity (left panel) and

receptor occupancy (center panel) were measured as functions of the number of ligands deployed in the space; the two functions also were

plotted against one another (right panel). B. As panel A, but with affinities uniformly reduced by two orders of magnitude (Gaussian peak

affinity Kd = 10−6 M, asymptotic affinity Kd = 10+4 M). C. As A, but with affinities reduced by three orders of magnitude (Gaussian peak affinity
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heterogeneity in the outcomes of random ligand point transitions dN. That is, any translation

dN in ligand quality generates an activation difference in each dimension which combine to

generate the net activation difference dε of a given receptor. Importantly, the effects of a trans-

lation in one dimension may increase or oppose the effects of that translation in other dimen-

sions. As dimensionality increases, the net variance of these superimposed effects will be

reduced, therefore reducing the expected value of dε for a random translation dN. A second

potentially contributing factor is that higher dimensions will statistically decorrelate the

responses of proximal receptors to a single ligand translation dN–i.e., reducing the (already

Kd = 10−5 M, asymptotic affinity Kd = 10+5 M). D. As panel A, but with the uniform distribution from which affinity Gaussian standard

deviations were selected shifted to higher values, while retaining the same breadth of unity. E. As panel A, but with the uniform distribution

from which affinity Gaussian standard deviations were selected doubled in breadth, incorporating the full range used across panels A and D.

Extending the range of affinity standard deviations to higher values caused peak discrimination capacity to occur with lower numbers of ligands

present (compare A to D, E), whereas excluding lower affinity Gaussian standard deviations (i.e., excluding receptors with sharper tuning

curves) reduced peak discrimination capacity (compare D to A, E). These effects are somewhat weaker than observed in Fig 3, in which efficacy

was held constant at unity.

https://doi.org/10.1371/journal.pcbi.1009054.g005
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Fig 6. Effects of increasing the number of deployed receptors. In contrast to the nonmonotonic effects of increasing the number of ligands,

increasing the number of receptor types deployed in a Q-space correspondingly improved the mean discrimination capacity in all cases. A.

Receptor activation and discrimination capacity as a function of the number of ligands in a Q-space with ten receptors deployed. B. As panel A,

but with 50 receptors deployed. C. As panels A-B, but with 100 receptors deployed. Compare also to Fig 5A, in which 30 receptors are deployed.

https://doi.org/10.1371/journal.pcbi.1009054.g006
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limited) extent to which a change in one receptor’s response could predict a change in the oth-

er’s response. The most appropriate dimensionality for Q-space is undefined, and indeed

depends on details of the species-specific receptor complement and the list of odorants consid-

ered to comprise the olfactory environment; i.e., it is ultimately heuristic. For present pur-

poses, we performed all of our simulations in two-dimensional Q-spaces except where

otherwise specified.

Effects of multi-receptor convergence onto glomeruli in MRT mice

In wildtype mice and other mammals, all primary olfactory sensory neurons (OSNs) express-

ing the same odorant receptor type converge axonally onto a common set of glomeruli in the

olfactory bulb, and each glomerulus receives inputs only from that one class of receptor neu-

rons. However, this rule is broken in transgenic Kir2.1 mice ([46]; see Methods), in which the

receptor specificity of glomerular targeting is disrupted (Fig 8A); axons from OSNs expressing

a given OR type project to several glomeruli (up to ~8) within a local region of the OB

(although one glomerulus remains the primary target and some glomeruli may receive only a

few fibers from that convergent OSN population). Conversely, a fraction of the axons converg-

ing on and constituting each glomerulus arise from OSNs expressing a number of different

receptor types (multiple receptor types glomeruli; MRT).

The specificity of OSN convergence onto individual glomeruli has long been hypothesized

to contribute to odor discrimination capabilities [56,71–73]. We asked whether a modest dis-

ruption of this convergence specificity on the scale demonstrated by Kir2.1 (MRT) mice would

yield impairments in discrimination sensitivity when presented with tests rendered difficult

owing to low concentrations or highly similar odorant mixtures; notably, Kir2.1 MRT mice

exhibit no significant impairments in performance when presented with easier discrimination

Fig 7. Effects of increasing Q-space dimensionality compared with increasing the size of a two-dimensional Q-space. Receptor activation and receptor occupancy

curves are separately depicted (center panels). A. Effects of increasing Q-space dimensionality. Each dimension spanned a range of four q-units, such that the three-

dimensional Q-space had a range of [4,4,4], the four-dimensional Q-space was [4,4,4,4], etcetera. B. Effects of increasing the range of a two-dimensional Q-space. Most of

the observed effects of higher dimensionality resembled the effects of simple increases in the size of the space, with subtle differences in curvature (compare leftmost three
panels). However, Q-space dimensionality, but not range, affected the relationship between activation or occupancy and the discrimination capacity. Most significantly,

increased dimensionality clearly reduced peak discrimination capacity, all else being equal, rather than simply moving the curve to the right so as to track receptor

activation. This suggests that the larger number of factors contributing to net receptor activation changes based on any single ligand point’s transition dN tends to

strengthen a regression to the mean effect, thereby reducing the likelihood of substantial changes in net receptor activation on which discrimination capacity depends.

https://doi.org/10.1371/journal.pcbi.1009054.g007
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Fig 8. Effects of multi-receptor convergence onto common glomeruli. In contrast to wildtype (SRT) mice, in which each

glomerulus is targeted only by one type of receptor, MRT transgenic mice exhibit glomeruli that are targeted by multiple

receptor types. In the model, whereas each glomerulus still was predominantly targeted by a single corresponding receptor

type, eight other receptor types also contributed smaller inputs. Mean occupancy, activation and discrimination capacity

functions were calculated for glomeruli as weighted averages of those exhibited by their constituent receptors. A. Whole
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tasks [74]. First, we performed a cross-habituation assay between 30/70 and 70/30 ratio mix-

tures of four odor pairs (Table 1). Control (SRT) mice were able to distinguish the two mix-

tures reliably in all cases, whereas MRT mice performed significantly more poorly (two-way

ANOVA with genotype and odor pair as factors; effect of genotype F(1,70) = 20.24, p< 0.0001;

other effects not significant; Fig 8B). Using a two-alternative forced choice task, we then

trained mice (to an 80% criterion) to discriminate between two structurally similar odorants

presented at 10−2 s.v. (1%) concentration, and then tested their capacity to discriminate

between these learned odorants at three lower concentrations. SRT mice remained able to dis-

tinguish the two test odorants at lower concentrations, whereas MRT mice performed signifi-

cantly more poorly (two-way ANOVA with genotype and concentration as factors; effect of

genotype F(1,138) = 17.71, p< 0.0001; effect of concentration F(2,138) = 4.24, p = 0.016, inter-

action not significant; Fig 8C). Finally, we used the same task to assess the mice’s ability to dis-

criminate between highly similar odorant mixtures presented as a series of mixture ratios. A

generalized linear model (binomial data, logistic regression) with two factors (genotype, mix-
ture ratio) applied to data gathered from amyl acetate/heptanal mixtures (Fig 8D, left panel)
indicated significant effects of genotype (χ2(1, n = 16) = 6.38, p = 0.012), mixture ratio (χ2(3,

n = 16) = 247.81, p< 0.0001), and their interaction (χ2(3, n = 16) = 12.50, p = 0.006). The same

analysis applied to data gathered from lemon/maple flavor mixtures (Fig 8D, right panel) indi-

cated significant effects of genotype (χ2(1, n = 20) = 14.78, p = 0.0001) and mixture ratio (χ2(3,

n = 20) = 280.66, p< 0.0001); their interaction was not significant (χ2(3, n = 20) = 1.58,

p = 0.664). That is, for both odor pairs, MRT mice were impaired in their capacity to discrimi-

nate the more difficult mixture ratios compared to wildtype SRT mice (Fig 8D; asterisks denote

significant post hoc pairwise comparisons).

To test whether a comparably modest disruption of this convergence specificity would yield

an impairment in fine discrimination sensitivity in our physicochemical sampling model

framework (i.e., a reduction in d �C), we constructed a range of OSN-glomerular projection

mount olfactory bulb images of green fluorescent protein signal from the axonal arbors of OSNs expressing the P2 receptor

in control (SRT) and Kir2.1 (MRT) animals maintained on a doxycycline-inclusive diet for 8 months. Whereas P2 receptor

axons converge onto a single glomerulus in SRT mice, this convergence is disrupted in MRT mice and multiple glomeruli are

innervated to differing degrees; conversely, glomeruli are each targeted by multiple receptor types [46]. B. Cross-habituation

between four variable-ratio odor mixture pairs (30:70 vs. 70:30) in SRT (black) and MRT (red) mice. Odor pairs are listed in

Table 1 and were delivered at a dilution of 10−4, except for lemon/maple flavors (Le/Mp) which were delivered at 10−1

dilution (see Methods). MRT mice spontaneously discriminated each of the four odor pairs significantly more poorly than

did SRT mice. C. Two-alternative forced choice odor discrimination performance when generalizing across concentrations.

SRT (black) and MRT (red) mice were trained to discriminate between the structurally and perceptually similar odorants

methyl valerate and methyl butyrate at a dilution of 10−2 (~1% saturated vapor; see Methods) and then tested on their

discrimination performance at this concentration and at three lower concentrations. Pre denotes performance at the start of

training. Dashed line denotes chance performance. D. Two-alternative forced choice odor discrimination performance as a

function of odorant similarity, using variable ratios of binary odor mixtures to systematically vary similarity. Abscissa

indicates the mixture ratio being compared to its complement; e.g., “90/10” denotes discrimination performance between a

mixture of 90% amyl acetate / 10% heptanal and a mixture of 10% amyl acetate and 90% heptanal, whereas “70:30” denotes

discrimination performance between a mixture of 70% amyl acetate / 30% heptanal and a mixture of 30% amyl acetate and

70% heptanal. Dashed line denotes chance performance. Significant post hoc pairwise comparisons between MRT and SRT

mice in panels B-D are denoted with � for p<0.05, �� for p<0.01, and ��� for p<0.001. Error bars denote SEM. Note that

when presented with easier (less similar) odor pairs, MRT and SRT mice exhibit similar discrimination performance [74]. E.

Occupancy, activation, and discrimination capacity effects in noses where each glomerulus received only 1% of its activation

from each of the eight secondary receptors. F. Effects in noses where each glomerulus received 4% of its activity from each of

the eight secondary receptors. G. Effects in noses where glomerular activation arose essentially equally from nine different

receptor types. Greater overlap in receptor targeting of glomeruli yielded progressively inferior discrimination capacities

(compare panels E, F, G). H. Effects in noses exhibiting a distribution of receptor contributions estimated from experimental

data in MRT transgenic mice (Kir2.1 mice; [46]). Specifically, the primary receptor contributed a proportion of 0.68, and

eight other receptors contributed proportions of 0.12, 0.08, 0.03, 0.03, 0.02, 0.02, 0.01, and 0.01, respectively. The model

replicates the modest odor discrimination deficits observed in MRT mice compared with SRT wildtype animals (Fig 5A).

https://doi.org/10.1371/journal.pcbi.1009054.g008

PLOS COMPUTATIONAL BIOLOGY Physicochemical model of odor sampling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009054 June 11, 2021 28 / 39

https://doi.org/10.1371/journal.pcbi.1009054.g008
https://doi.org/10.1371/journal.pcbi.1009054


profiles and measured their discrimination sensitivity functions. First, to directly examine the

effect of glomerular sampling fields spreading out increasingly to incorporate multiple recep-

tor types, we constructed MRT glomerulus objects (see Methods) in which the contribution of

the primary odorant receptor was reduced from 100% (Fig 5A) to 92%, 68%, and 12%, with

the eight glomeruli immediately surrounding the glomerulus of interest (in a 5x6 torus) each

contributing an equal part of the remaining portion of receptor input (Fig 8E, 8F and 8G). All

else being equal, broader sampling fields progressively reduced discrimination sensitivity in all

cases, without affecting receptor occupancy or activation functions. We then constructed glo-

meruli with a “realistic” distribution of receptor inputs reflecting those observed in MRT mice

(Fig 8H). Arrays of these MRT glomeruli yielded reduced discrimination sensitivities

(impaired odor discrimination) compared with the SRT wildtype configuration (Fig 5A),

reflecting the modest behavioral odor discrimination deficits observed in Kir 2.1 mice (Fig 8B,

8C and 8D). The performance of this distribution of receptor inputs was closely comparable to

that of Fig 8F, suggesting that the relative contribution of the primary odorant receptor (68%

in both cases) was the chief determinant of performance.

We then constructed a larger version of the “realistic” simulation, deploying 100 receptors

into Q-space and mapping 100 corresponding olfactory bulb glomeruli onto a 10x10 torus. In

separate simulations, for each glomerulus, we drew the minor receptor contributions either

from the eight surrounding glomeruli (Fig 9A) or randomly from the entire glomerular field

(Fig 9B). Drawing minor inputs to each glomerulus from random receptors yielded results no

different than drawing them from the immediate physical surround of the primary glomeru-

lus, as predicted given the absence of proximity-correlated chemotopy in the olfactory bulb

[26,75–77]. As expected, the peak discrimination sensitivities of this larger glomerular array

were superior to that of the smaller 30-receptor deployments, but inferior to those of a

100-receptor deployment in a wildtype (SRT) configuration (Fig 6C). These results replicate,

Ψ
Ψ Ψ

Ψ

Fig 9. Absence of any effect of glomerular position on the MRT effect. To generate a 10x10 toroidal map of glomeruli, the number of

receptors was increased to 100 for all plots. A. Restricting secondary glomerular inputs to those eight receptors primarily targeting immediately

neighboring glomeruli yields patterns of neighborhood-based reciprocal relationships. B. Effects based on MRT glomeruli receiving their inputs

from a random set of receptors. There were no discernable differences in discrimination capacity peaks or relationships between the two

architectures. The relative contributions of the nine receptor inputs were based on experimental data as in Fig 8H.

https://doi.org/10.1371/journal.pcbi.1009054.g009
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and potentially explain, the modest reduction in fine olfactory discrimination performance

observed in MRT transgenic mice (Fig 8B, 8C and 8D).

Discussion

This physicochemical sampling model simulates the pharmacological interactions between a

species-specific complement of odorant receptors and an odorscene, which comprises one or

more odor sources. Each odor source is based on one or more odorous molecules, each of

which expresses some number of ligands via which it interacts with odorant receptors. This

framework enables expression of the full complexity of odorant-receptor interactions based on

the intersections of Gaussian receptor functions and lists of ligand points within a quality

space of arbitrary range and dimensionality. The model enables assessment of the response of

a given odorant receptor complement–i.e., the olfactory epithelium of a specific ‘nose’–to a

given odorscene, and how sensitive that response is to small changes in the odorscene. Fig 10

Fig 10. Illustration of physicochemical sampling and the transformation of odor representations from Q-space to R-space. A. A two-dimensional Q-space in

which three receptors (Gaussian pairs R1, R2, R3) are deployed. Red ellipses denote the 1.5 σ contours of the affinity Gaussians, and blue those of the efficacy

Gaussians, as in Fig 1. Two four-component source odors (i.e., comprising four ligand points) also are depicted: odor ABCD (green triangles) and odor AEFG (violet
bullseyes; note that the two odors share one ligand in common). For present purposes, all ligands are presented at the same moderately effective concentration. As

shorthand descriptors, affinity and efficacy are here described as high or strong when ligand points are near the center of the respective ellipse, moderate when just

inside the ellipse contour, weak or low when just outside the contour, and nil when distant from the ellipse. Ligand A has moderate affinity for R1 and activates it with

moderate efficacy, so constitutes a reasonably effective R1 agonist. It binds only weakly to R2, and with low efficacy. Ligand B binds to R1 with the same affinity and

efficacy as ligand A, and interacts very weakly with R2 (though marginally less weakly than A). Ligand C also binds to R1 with the same moderate affinity and efficacy

as ligands A-B, but binds strongly and with high efficacy to R2. Ligand D again has the same moderate affinity to R1, but exhibits a much lower efficacy; it is

essentially an antagonist of R1. At R2, ligand D binds moderately well and is an agonist of moderate efficacy. Ligand E binds more weakly to R1 than ligands A-D, but

exhibits the same efficacy there as ligands A-C. It does not appreciably interact with R2. Ligand F does not interact appreciably with R1, but exhibits moderate binding

and low efficacy to R2 –i.e., it is a partial agonist of R2 tending towards antagonism. Ligand G does not interact measurably with either R1 or R2 –that is, this

particular complement of receptors is insensitive to ligand G. (Of course, a different animal species might express a receptor that interacts substantially with ligand G).

None of the ligands interact measurably with receptor R3. The color of the heat map (see Fig 1F for scale) denotes a d �C
�
value for that ligand point–the expected

contribution of that ligand (across all receptors) to the overall discrimination capacity. As the ligands of odor ABCD, combined, exhibit a greater sum of individual

d �C
�
values than those of odor AEFG, it will be easier for the animal expressing these receptors to detect a small quality change to ABCD than it would to detect a

similar quality change to AEFG. B. Plot of the affinities of each ligand for receptors R1 and R2, where 0 denotes no affinity and 1 denotes the strongest affinity (Kd =

10−8 M in most of the present simulations). Receptor R3 is neglected as it interacts with no ligands. Each plotted point also is labelled with that ligand’s efficacy at R1

and R2 (respectively). C. Depiction of the two source odors in the R-space defined by receptors R1 and R2 (R3 is again neglected). Odor ABCD (green triangle)

activates R1 moderately, assuming that the three moderate agonists outweigh the effects of the single moderate antagonist, and activates R2 moderately strongly,

because ligands C and D are both effective agonists whereas ligands A and B do not strongly interact with that receptor. Odor AEFG (violet bullseye) activates R1

relatively weakly, because A is a moderate agonist, E is a weak agonist, and F and G do not appreciably interact with the receptor. Among the ligands of odor AEFG,

only ligand F interacts substantially with R2, as a low-efficacy partial agonist–consequently, R2 is minimally activated by that odor. The distance between these two

odor representations in R-space denotes their physical similarity after sampling. Importantly, if these same two odors were sampled by an animal expressing two

different receptors, this similarity relationship would be different. Moreover, the full representation of odors ABCD and AEFG in R-space does not actually comprise

a single point, but a smooth manifold, based on experience and incorporating the natural quality variance of the odor source (discussed in [78]).

https://doi.org/10.1371/journal.pcbi.1009054.g010
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presents an example of this process of physicochemical sampling, illustrating the interactions

of two multicomponent odors with a specific complement of odorant receptors, and how this

interaction results in glomerular-layer odor representations that can be mapped into R-space.

In the present simulations, ligands and receptors were deployed at randomized, uniform dis-

tributions across Q-spaces in order to examine the main effects of receptor properties and den-

sities. Among other findings, the model demonstrates that the reduced glomerular targeting

specificity exhibited by the Kir2.1 (MRT) transgenic mouse model [46] would yield a modestly

reduced sensitivity to fine odor discriminations, sufficing to explain that observed phenotype

(Fig 8).

It is sometimes underappreciated that odorant-receptor interactions are simple ligand-

receptor interactions that follow standard pharmacological laws. Whereas odorant receptors

are sometimes characterized as “broadly tuned”, in supposed contrast to other seven-trans-

membrane receptors such as muscarinic cholinergic receptors, beta-adrenergic receptors, and

metabotropic glutamate receptors, there is nothing special about odorant receptors save their

diversity and their deployment in an unregulated external environment. Odorant receptors

indeed respond to ranges of similar odorants, as well as to less-similar odorants that presum-

ably exhibit some common ligand [30–33,39], but this breadth is not a property of the recep-

tors per se so much as it is a property of the statistics of their chemical environment. To wit,

muscarinic cholinergic receptors also respond to several experimental agonists, and bind

experimental antagonists, and there exist many more weak and partial agonists for this recep-

tor that are not scientifically useful. However, the receptor is deemed a cholinergic receptor

because it never encounters any of its ligands other than acetylcholine under natural circum-

stances. In contrast, odorant receptors are deployed into an unregulated chemical environ-

ment in which encounters with their diverse ligands are part of normal function. The present

model framework is designed to quantify and explain such phenomena as the effects of larger

numbers of ligands, different receptor complements, and the relative prevalence of antagonis-

tic interactions on olfactory system function.

Perceptual spaces

Quality space, or Q-space, provides a representation of physicochemical similarities among

potential ligands. Critically, Q-space does not define odor perceptual similarity; that is a post-

sampling phenomenon that depends on the chemoreceptive fields exhibited by an animal’s

receptor complement as well as on subsequent learning-dependent transformations in the

brain. Rather, Q-space is defined by structural commonalities that underlie correlations in

ligand-receptor binding likelihoods. For this reason, individual receptors are defined by a sin-

gle pair of Gaussians localized within Q-space. If two molecular ligands are able to interact

with a given receptor, then they are correspondingly close in Q-space, irrespective of how simi-

lar they might be in terms of some other arbitrary physicochemical metric. The large number

of different ways in which molecular ligands are able to vary, and the diverse effects that any

given change in a ligand might exert on any two different receptors, requires that Q-space be

of an arbitrary dimensionality defined by the complexity of the odorscenes and the sets of

odorant receptors to be investigated. Most simulations herein were performed in two-dimen-

sional Q-spaces for ease of illustration, bolstered by results indicating that most outcomes in

higher-dimensional Q-spaces also can be obtained in two-dimensional Q-space (Fig 7). Inter-

estingly, early efforts to map a physicochemical quality space based on perceptual similarities

argued that most of the variance could be encompassed by two dimensions [22,24], though the

underestimation of dimensionality can be a common consequence of undersampling ligand

diversity.
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Odorscenes of arbitrary complexity comprising any number of independent sources are

depicted as lists of ligand points within Q-space, each exhibiting a concentration. Notably, any

combination of odor sources, irrespective of the complexity of each source or the number of

sources present, can be decomposed into a simple list of ligands (with associated concentra-

tions). Ligands that compete for the same receptors, whether arising from the same or different

sources, will be adjudicated by standard pharmacological laws. This direct implementation

also enables the straightforward modeling of corner cases. For example, monomolecular odor-

ants with nonmonotonic dose-response curves can be implemented as one high-affinity, high-

efficacy ligand plus one somewhat lower-affinity, low-efficacy ligand; at higher concentrations,

the latter competes effectively with the former to reduce the total receptor activation below its

lower-concentration peak. Ultimately, these interactions between ligands and receptors gener-

ate a characteristic pattern of activity across the complement of receptors that comprises any

given nose.

Receptor space, or R-space, is the sensory metric space into which the primary olfactory

sensory response pattern is deployed [78]. Unlike Q-space, R-space has a defined dimensional-

ity equal to the number of different receptor types expressed by the species in question (e.g.,

1000–1200 in mice, ~400 in humans), such that any instantaneous pattern of response intensi-

ties among receptors, or glomeruli, can be depicted as a point in this unit space, within which

a fully-activated receptor returns a coordinate of 1 in that dimension whereas an inactive

receptor returns a coordinate of zero. This post-sampling sensory space is the outcome of the

present model framework and the basis for subsequent neural computations that construct

odor representations and perceptual similarity. R-space also is the basis for arguments that

early olfactory computations are intrinsically high-dimensional [75,76,79–81]. Experimentally,

the most direct (albeit partial) measurement of activity in R-space is the pattern of glomerular

activation levels observable via optical imaging [26,57–60], although the transformation from

receptor activation to glomerular activation is nonlinear, including axonal convergence from

different regions of the epithelium, feedback-based normalization [82], and other potential

heterogeneities, some of which may underlie the broader dose-response curves observed via

optical imaging at the collective glomerular level [4,56]. In the present model, glomerular acti-

vation levels directly reflected receptor activation levels, except in simulations of transgenic

MRT mice in which they reflected weighted averages of the multiple receptors contributing to

their activation (Fig 8E, 8F, 8G and 8H).

Ligand models vs. the theory of odotopes

The ligands that comprise odor sources in this model are subtly but distinctly different from

odotopes following the definition of Cleland [83]. Briefly, the odotope there is defined as “the

net effect of a given odorant molecule on a single type of odorant receptor”, divorced from a

strict association with a particular binding ligand on that molecule. This definition offers clear

theoretical benefits for incorporating quantitative biological data into non-pharmacologically

based models. However, in the present circumstances, the goal is to explicitly model the molec-

ular and mixture complexities and competitive interactions that underlie such data. Odotopes

per se are not discussed in the present paper.

The diversity of pharmacological interactions

Partial, weak, and antagonistic ligand-receptor interactions are fundamental features of basic

pharmacology, and odorant receptors enjoy no exception from these physical principles.

Indeed, interactions between related ligands and identified odorant receptors have been

shown to exhibit diverse efficacies [32,33,43,44]. As the chemical environment encountered by
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odorant receptors is largely unregulated, it has long been recognized that these nonlinear com-

petitive interactions exert a substantial influence on peripheral odor encoding and contribute

to the complexity of odor mixture interactions [34–36,44,47,49,84]. Contemporary studies

revisiting or rediscovering this phenomenon have made broad measurements of odor and

mixture effects upon OSN activation levels in the intact epithelium that reflect these pharma-

cological principles, illustrating that odorant receptor antagonism is a common and wide-

spread phenomenon [37–39,41,42]. In particular, it has been observed that this antagonism

has benefits for representing mixtures containing larger numbers of different odorants without

saturation [39], as illustrated here in Fig 4. The improved “encoding capacity” that these

authors suggest arises from antagonism, however, would not arise from sparseness–which is

not directly relevant here–but for the reasons outlined in Effects of different receptor efficacy
Gaussian functions and illustrated in Fig 4. Adherence to basic pharmacological laws also does

not constitute an “evolutionary solution to the complexity of natural odors”. Similarly, the

related claim that antagonism provides a form of normalization–specifically, rendering the dis-

tribution of responses in the OSN population independent of the number of components in a

mixture [40,42]–is in error. The error largely arises from the ad hoc model developed in [40],

which discretizes various interactions and responses rather than employing established phar-

macological laws. Fig 4 illustrates that it is receptor occupancy saturation, irrespective of the

proportion of antagonistic responses, that produces the state in which additional ligands no

longer systematically alter the mean activation level of the OSN population (i.e., where the acti-

vation curve becomes asymptotic; compare panels A-F, middle panels). Instead, the degree of

antagonism (more specifically, the distribution of efficacies) influences the mean receptor acti-

vation level that is associated with this occupancy saturation (an effect roughly reflected by Fig

4A in [40]). The inclusion of antagonistic responses is nevertheless beneficial, though, as it

improves individual OSNs’ capacity to respond to small changes in odor quality even after

occupancy saturation.

As a general principle, the encoding of environmental odorant information by primary

receptor activation patterns is heavily constrained by the physics of ligand-receptor interac-

tions and should be understood as such. Biological adaptations to the problem of chemosensa-

tion are many and diverse–and may include details of OSN physiology such as nonzero

baseline activation levels [85], which enable the phenomenon of inverse agonism [38,85], and

receptor reserve heterogeneity [56], which enables populations of sibling OSNs to encode

broader ranges of ligand concentration. However, the unavoidable degeneracy of primary che-

mosensory sampling–in which levels of receptor activation cannot individually identify the

ligands or combinatorial groups of ligands that evoke that activation–does not qualify as an

adaptive “computation of mixture information”; rather, it should instead be considered as a

problem requiring resolution by downstream neural circuitry [81].

Additional physiological and pharmacological effects exist that have been described or sug-

gested for odorant receptors but are not explicitly modeled here: inverse agonists, inhibitory

responses, and noncompetitive interactions. Inverse agonists are distinguished from (neutral)

antagonists only when a receptor-coupled effector mechanism exhibits some nonzero level of

constitutive activation. Under such circumstances, a ligand that, when bound, reduces effector

activation below this baseline level qualifies as an inverse agonist. This effect can be measured

as a simple negative efficacy [86], but in the present context this is a heuristic that obscures the

nature of the interaction. To wit, the (negative) efficacy of such a ligand-receptor interaction is

not a characteristic property of that interaction, as it also depends upon the level of and basis

for the constitutive activity of the system against which it is measured. In the present frame-

work, the efficacy parameter represents the proportion of potential receptor activation that a

given ligand would evoke at full occupancy, and hence is limited to the range [0,1] on
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principle. If receptor-coupled effector activity has a constitutive level of, say, 20%, then a ligand

exhibiting an efficacy of 0.2 at that receptor would be assessed as a neutral antagonist, whereas

ligands exhibiting lower efficacies would be considered inverse agonists. Constitutive activity

in OSNs is thought to depend on constitutive activity in ORs [85,87], and as such could be

modeled by adding one or more ligand points to reflect this background activity level and

enable a functional result of inverse agonism. However, if effectors present a level of constitu-

tive activity that is decoupled from receptor activation–potentially a much more complex cir-

cumstance–then this would be modeled in the present framework by adding relevant

parameters describing this baseline activity and adjusting the activation function in the recep-

tor objects to incorporate these new parameters.

Many inhibitory responses to odorants described to date in vertebrate OSNs appear to

derive from inverse agonism [38,85]. This must be distinguished from parallel OSN receptor-

effector pathways that generate genuine inhibitory responses, as have been long established in

lobster OSNs ([88]; see also [89]) and more recently demonstrated in mammalian OSNs [90–

92], presenting the prospect of a form of opponent encoding [91]. In the present computa-

tional framework, the latter phenomenon would be most conveniently modeled by deploying

multiple Gaussian pairs (receptors) that converge onto a given glomerulus object, one (or

more) of which contribute negative activation to that object. An intermediate OSN object of

course could be constructed if warranted. The efficacy parameter would remain in the [0,1]

range for all ligand-receptor interactions.

Noncompetitive (including allosteric) receptor interactions [31,36,93] can be arbitrarily

diverse, underlying inhibition, facilitation, and more complex interactions, and are not explic-

itly included in the present framework. If desired, these effects would be modeled using multi-

ple Gaussian pairs converging on a given receptor object with the specific interactions of

interest encoded into that receptor object.

Summary

Odorant receptors obey established pharmacological laws as a matter of first principles. In

comparison to other membrane receptors, they warrant special consideration only because of

the relatively unregulated environment in which they are deployed. To wit, a cholinergic

receptor gains that name because, within its regulated physiological environment, no signifi-

cant agonist or antagonist other than acetylcholine is ever present; the receptor never naturally

encounters the great diversity of other agonists, partial agonists, and antagonists that exist for

it. In contrast, when odorant receptors are deployed into the olfactory epithelium, the diversity

of ligand encounters is largely unregulated. The resulting degeneracy prevents specific inter-

pretation of individual receptor activation. Specificity is gained instead by deploying large

numbers of receptor types (hundreds in mammals) with diverse chemoreceptive fields into the

olfactory epithelium. There, chemical ligands interact with multiple sensitive receptors, with

individual interactions exhibiting characteristic affinities and efficacies. This combinatorial

specificity provides information sufficient to counteract individual receptor degeneracy, and

the peripheral olfactory system is structured to harness this information. However, the com-

plexity of these many interacting pharmacological and neurophysiological variables renders

unclear the quantitative properties of the resulting system and the outcome of any particular

environmental sampling event. How does the peripheral olfactory system leverage the benefits

and mitigate the limitations of the physical sampling principles imposed upon it?

Theoretical frameworks such as that presented here impose discipline on hypothesis gener-

ation when the systems under study are too complex to simply intuit [78,94]. In the present

framework, we describe a computational platform in which odorant ligands can be distributed
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in a physicochemical quality space and sampled by batteries of odorant receptors according to

established pharmacological laws. This framework enables study of how mixture interactions

and complex environments affect odor sampling, the impact of antagonistic and partial-ago-

nist interactions on odor discrimination capabilities, and the utility of single-receptor conver-

gence patterns onto olfactory bulb glomeruli. It also demonstrates the value of larger receptor

deployments, and enables comparisons of how effectively different receptor complements

(species-specific noses) sample a common physicochemical environment. In the present study,

we focused on uniform distributions of receptors and ligands in order to establish the core

properties of the system. Among other findings, we illustrate the likely basis for the phenome-

non of “olfactory white” as a form of regression to the mean, and show that reducing the speci-

ficity of axonal convergence onto olfactory bulb glomeruli will systematically reduce the

sensitivity of odor discrimination. Additional applications for this model framework include

olfactory natural scenes studies based on nonuniform ligand distributions within Q-space and

the adaptive properties of particular receptor deployments with respect to specific chemical

environments, as well as assessment of the benefits and limitations of uniglomerular versus

multiglomerular sampling by mitral cells.
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