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Abstract 

In the mammalian olfactory bulb (OB), gamma oscillations in the local field potential are 

generated endogenously during odor sampling.  Such oscillations arise from dynamical systems 

that generate organized periodic behavior in neural circuits, and correspond to spike timing 

constraints at fine timescales. While the cellular and network mechanisms of gamma 

oscillogenesis in the OB are reasonably well established, it remains unclear how these fine-

timescale dynamics serve to represent odors. Are patterns of spike synchrony on the gamma 

timescale replicable and odor-specific? Does the transformation to a spike-timing metric embed 

additional computations? To address these questions, we used OB slices to examine the spike 

timing dynamics evoked by “fictive odorants” generated via spatiotemporally patterned 

optogenetic stimulation of olfactory sensory neuron axonal arbors. We found that a small 

proportion of mitral/tufted cells phase-lock strongly to the fast oscillations evoked by fictive 

odorants, and exhibit tightly coupled spike-spike synchrony on the gamma timescale during this 

stimulation. Moreover, the specific population of synchronized neurons differed based on the 

“quality”, but not the “concentration”, of the fictive odorant presented, and was conserved across 

multiple presentations of the same fictive odorant.  Given the established selectivity of piriform 

cortical pyramidal neurons for inputs synchronized on this timescale, we conclude that spike 

synchronization on a milliseconds timescale is a metric by which the OB encodes and exports 

afferent odor information in a concentration-invariant manner.  As a corollary, mitral/tufted cell 

spikes that are not organized in time may not contribute effectively to the ensemble odor 

representation.    
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Introduction 

Sensory systems are faced with the task of encoding information about an organism’s 

environment in an accurate yet efficient manner. At the periphery, primary sensory neurons 

typically represent stimuli within their receptive fields by changes in their mean spike rates that 

vary on the behavioral timescale in accordance with evolving stimulus properties. Subsequent 

stages of sensory processing, however, can transform and embed this sensory information into 

temporally structured activity that operates on faster timescales and governs the intra- and inter-

areal synchronization properties of neuronal ensemble spike patterns.  In olfaction, such fast-

timescale spike synchronization is known to be necessary for fine odor discrimination in the 

honeybee (Stopfer, Bhagavan, Smith, & Laurent, 1997) and its importance in mammalian 

olfaction is becoming evident as well.  

In the vertebrate olfactory bulb (OB), the representation of odor identity has long been 

understood to be distributed across populations of differently-tuned principal neurons (mitral and 

projecting tufted cells; MTCs). Odor-selective ensemble activity patterns can be identified in 

MTC activity rates on the behavioral timescale – specifically, in the slower periodicity associated 

with respiration or active sniffing behaviors (theta band; 2-12 Hz in rodents; Gervais, Buonviso, 

Martin, & Ravel, 2007). However, it also has long been appreciated that odor sampling 

generates fast oscillations in the OB local field potential (gamma oscillations; 30-100 Hz; 

Freeman, 1978), indicating that neuronal ensemble activity in the OB becomes intrinsically 

organized at this faster timescale in response to afferent inputs.  (These OB-intrinsic oscillations 

then can transition into the somewhat slower beta band (15-30 Hz) during epochs of coherence 

with piriform cortex; (Frederick et al., 2016). Physiological recordings and theoretical analyses 

have described a dynamical system arising from the reciprocal interactions of resonant principal 

neurons (MTCs; Desmaisons, Vincent, & Lledo, 1999; Rubin & Cleland, 2006) and inhibitory 

interneurons (granule cells; GCs) within the OB external plexiform layer (EPL) (Lagier, Carleton, 

& Lledo, 2004; Li & Cleland, 2017; Peace et al., 2018; Schoppa & Urban, 2003). This PRING 

network (pyramidal resonance interneuron network gamma; Li & Cleland, 2017; Peace et al., 

2018) is able to generate stable gamma oscillations that are zero-phase coherent across the 

EPL (Freeman, 1978; Kay et al., 2009; Kay & Lazzara, 2010), remain robust to heterogeneous 

MTC activation levels (Cenier et al., 2008; Li & Cleland, 2017; Lowry & Kay, 2007) and 

constrain the timing of MTC spikes to a particular gamma phase window (Bathellier, Lagier, 

Faure, & Lledo, 2006; Kashiwadani, Sasaki, Uchida, & Mori, 1999). More specifically, the 

dynamical system generated by this cellular network temporally phase-constrains the spiking of 

activated MTCs with respect to its coherent periodicity on the gamma timescale, thereby 

generating an oscillatory local field potential as a side effect of this coordinated activity.  

However, the functional role of this gamma-timescale temporal structure in odor representations 

– specifically, the extent to which MTCs encode odorant quality information in their spike timing 

properties on the gamma timescale – remains unknown.  

These limitations on our understanding persist in part because odorant stimuli are difficult to 

control. All odorants – even monomolecular odorants – bind to multiple types of primary odorant 

receptors with different affinities and efficacies (discussed in Gronowitz, Liu, Qiu, Yu, & Cleland, 

2021), such that primary olfactory sensory neuron (OSN) activation profiles vary nonlinearly and 
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sometimes non-monotonically with concentration. Moreover, the timing of odor stimulus delivery 

is imprecise, rendering it difficult to determine whether variations in fine-scale temporal 

response properties arise from internally regulated OB network dynamics or simply from the 

undercontrolled timing of odorant delivery to receptors. We here use an in vitro olfactory bulb 

slice preparation to overcome these constraints. Specifically, we here deliver dynamically “odor-

like” stimuli to OB slices using spatiotemporally patterned optical stimulation of OSN axonal 

arbors in OB slices, while recording MTC ensemble responses using a 120-channel planar 

multielectrode array.  This strategy enables a mechanistic assessment of stimulus-evoked fast 

oscillatory dynamics in the EPL network, and illustrates how the physical features of sensory 

inputs are reflected in MTC response profiles, including the regulation and synchronization of 

MTC spike times on the gamma timescale. 

The synchronization of convergent action potentials on fast (gamma/beta) timescales is well-

matched to the typical integration time constants of neuronal membranes, and thereby enables 

effective heterosynaptic integration in follower cells.  In particular, it is established that pyramidal 

neurons in the piriform cortex are selectively activated by convergent MTC spike inputs that are 

synchronous on this timescale (Luna & Schoppa, 2008). This selectivity suggests that MTCs 

would effectively represent odorants via patterns of spike synchronization on this gamma/beta 

timescale.  We therefore sought to ask: how do odor-evoked dynamics intrinsic to the OB shape 

MTC spiking activity?  Are the resulting patterns of spike synchronization on the gamma 

timescale both replicable and odor-specific?  And, finally, in addition to this metric 

transformation of the glomerular-layer representation into a fast spike synchronization-based 

representation on the gamma timescale, does a computational transformation of information 

content also occur?   

 

Results 

Optical stimulation with “fictive odors” 

Horizontal OB slices were taken from OMP-ChR2/EYFP (ORC-M) mice and placed onto a 120-

channel planar multielectrode array (MEA). Each slice was imaged with a custom fluorescent 

microscope (see Methods) to determine the location of the EYFP-expressing glomerular layer 

within the slice (Figure 1A). Spiking activity was observed along a band of electrodes located 

immediately deep to the glomerular layer (corresponding to the external plexiform and mitral cell 

layers), and could be evoked by optical stimulation of the glomerular layer (Figure 1B-C). 

The parameters of light stimulation were designed to provide naturalistic, odor-like afferent input 

to the slice. First, we calibrated stimulus intensity by characterizing neural responses to a single 

pulse of light across a series of increasing intensities. We determined a range of light intensities 

(0.1-1.0 uW/mm2) that drove robust increases in the instantaneous firing rates of MTCs, 

comparable to odor-evoked firing rates and patterns recorded in vivo (Figure 1D). Moreover, 

within this intensity range, for any given optical stimulus pattern, the relationship between light 

intensity and the stimulus-evoked firing rate varied across responsive MTCs – exhibiting a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.496396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496396
http://creativecommons.org/licenses/by-nc-nd/4.0/


response diversity comparable to the distinct classes of responses described in foundational 

studies of MTC odorant responses (Hamilton & Kauer, 1989; Meredith, 1986; Wellis, Scott, & 

Harrison, 1989). Many neurons showed stimulus-evoked increases in firing rate that either 

returned to baseline shortly after the stimulus ended or were sustained well beyond the stimulus 

duration; other neurons, in contrast, showed periods of clear suppression subsequent to their 

initial excitation (corresponding respectively to E1 and E2 - type responses in Hamilton & Kauer, 

1989; Meredith, 1986; Figure 1D-E). Wholly suppressive responses (S-type) were observed 

relatively rarely (see Figure 2), in part because of the lower baseline MTC spike rates observed 

in vitro, and perhaps also because the slicing process reduces lateral connectivity in the deep 

glomerular layer, which normally contributes to feedback normalization (Banerjee et al., 2015; 

Cleland & Borthakur, 2020; Peace et al., 2018). 

To model the sparse glomerular activation characteristic of natural odorants, each 

spatiotemporal stimulus pattern (“fictive odor”) consisted of three localized spots of light (60 μm 

radius), delivered onto the glomerular layer with 6 Hz (theta band) intensity modulation to reflect 

active sniffing dynamics. Within a given slice, we defined 2-4 stimulus patterns that differed in 

“quality” (i.e., that differed in which glomeruli were stimulated; see Stimulus Modeling section in 

Methods; Figure 2A). In some experiments, each fictive odor stimulus was presented at different 

“concentrations'', wherein the intensities of light-activated regions were adjusted co-

monotonically within the established intensity range. Under these stimulation parameters, 5-

35% of the MTCs recorded in each slice showed excitatory responses to a given fictive odor 

(Figure 2B); the remainder exhibited no response, or else exhibited suppressive/inhibitory 

responses that could not be clearly distinguished given the low baseline MTC spike rates. 

Fictive odors that differed in quality evoked excitatory responses in different ensembles of 

MTCs, and these ensembles of activated MTCs were largely conserved over different intensities 

(“concentrations”) of the same fictive odor (Figure 2C-D).   

Stimulus-evoked gamma rhythmicity in the local field potential 

Fictive odor stimuli evoked persistent gamma oscillations in the LFP (Figure 3A-B), consistent 

with previous results from our lab (Peace et al., 2018) and with natural responses to odors 

recorded in vivo (Freeman, 1978; Kay et al., 2009). In OB slices, electrodes with measurable 

gamma oscillations formed a band immediately deep to the glomerular layer, consistent with the 

location of the external plexiform and mitral cell layers (Figure 1A-B; Figure S1). Stimulus-

evoked gamma oscillations commonly occurred in an odor quality-specific manner, such that 

power levels in the gamma band measured at multiple recording sites covaried across different 

intensities of a particular fictive odor (see Methods), but varied relative to one another in 

response to fictive odors of different qualities (Figure 3A-B). 

Oscillations in the LFP reflect temporal coordination among neural assemblies in the local 

population.  Dynamical systems-based coordination of the membrane properties of neurons in 

such assemblies can robustly constrain the timing of action potential generation and 

propagation (Li & Cleland, 2017). Therefore, we first sought to determine whether spiking 

activity in recorded MTCs was phase-constrained with respect to fictive odor-evoked gamma 

oscillations by computing the phase-locking values (PLV) of unit activity – that is, the phase-
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specificity of evoked action potentials with respect to simultaneously recorded LFP gamma 

oscillations (see Methods).  Because the PLV measure is biased with respect to spike count, we 

subsequently applied Rayleigh’s uniformity transformation, generating Z-scores and 

corresponding p-values for each PLV measure that compensate for this bias. Unsorted multiunit 

activity demonstrated weak but significant phase-locking to stimulus-evoked gamma oscillations 

(p < 0.05, Rayleigh’s test of uniformity; 167.8⁰ phase preference; Figure 3C, MUA), whereas 

strong phase-locking was clearly present in the activity of a subpopulation of individual neurons 

(p < 0.01, 136⁰ phase preference for unit depicted; Figure 3C, Single unit).  This result 

suggested that fictive odor stimulation might selectively constrain spike phases in a stimulus-

specific population of MTCs.  Time-resolved analysis revealed that the gamma phase-constraint 

of action potentials generated by individual stimulus-activated MTCs indeed increased 

specifically and transiently during stimulus presentation.  Notably, this stimulus-gated phase 

constraint could occur even in units in which the stimulus did not increase the instantaneous 

spiking rate (Figure 3D).  

In principle, single-unit spike trains with non-Poisson statistics could generate phase 

distributions over a time window of finite length that systematically differ from Rayleigh’s null 

hypothesis of uniformity, even in the absence of underlying periodicity. For example, a rapid 

burst of activity from a neuron could yield several spikes that are similar in phase yet unrelated 

to any coordinating network oscillation. To determine the extent to which activity in a recorded 

population of neurons would be likely to generate non-uniform phase distributions without any 

periodic modulation of spike timing, we assessed the phase-locking of single unit activity in the 

pre-stimulus period (during which there was no detectable spectral peak in the gamma band).  

This measure then was used as a baseline against which to compare the properties of stimulus-

evoked PLVs. On average, fictive odor stimulation significantly increased the gamma-band 

phase-locking of individual MTCs over that measured at baseline (Rayleigh Z-scores of PLVs; 

ZPLV = 1.276 compared to baseline ZPLV = 0.817; paired t-test; t(103) = 2.85, p < 0.01; Figure 

3E). Moreover, analyses of individual units revealed considerable variability among MTC 

responses.  Specifically, whereas spiking activity in most MTCs appeared relatively unaffected 

by the presentation of a particular fictive odor, a substantial minority was strongly phase-

constrained to gamma (7.7% with p < 0.05, compared to 1.9% at baseline; Figure 3E). Gamma 

rhythmicity also was clearly present in the autocorrelograms of MTC units during the stimulus 

period, whereas the pre-stimulus baselines lacked any obvious rhythmicity (Figure 3F).  

Together, these results indicate that fictive odor stimulation – i.e., selective glomerular activation 

via delivery of specific spatiotemporal patterns of light – drives fast, rhythmic responses in the 

OB external plexiform layer that phase-constrain the action potentials of selected individual 

MTCs in the gamma band.   

Spike synchronization-based representations of fictive odorants 

Based on this elevated phase-locking of MTC spikes to LFP gamma, we hypothesized that 

fictive odor stimulation increased the gamma-timescale synchronization of spikes generated by 

co-activated MTCs. To assess spike-spike synchronization, we conducted unitary event (UE) 

analyses (Grun, 2009; Grun et al., 2002a; see Methods) on spike trains from all pairwise 

combinations of recorded MTCs during fictive odor presentation. Briefly, this method is designed 
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to detect coincident spike events between parallel spike trains on a defined timescale.  We used 

a bin size of 5 ms to reflect the permissive epoch (Imam & Cleland, 2020) of a gamma cycle – 

i.e., roughly 25% of a 50 Hz oscillatory period. The significance of coincident spiking was 

evaluated by generating a distribution of expected coincidences for each pair of spike trains 

based on bootstrapped surrogate data in which spike times from the real data were randomly 

dithered by up to 10 ms. Critically, this surrogate approach conserves key statistical properties 

of the original data – such as the instantaneous firing rate and approximate spike train structure 

– while destroying the fine temporal precision of spike events. Unit pairs were deemed 

“synchronous” only if the number of their empirical spike coincidences was in the top 1% of their 

respective surrogate distributions. 

A representative example of UE analysis on a pair of units activated by fictive odor stimulation is 

shown in Figure 4A. Synchronized spiking (within a 5 ms bin) increased during the stimulus 

window, was usually modulated by the phase of the periodic stimulus input (6 Hz theta band, 

mimicking mouse sniffing behavior), and remained elevated throughout the stimulus 

presentation even as the firing rates of the units returned to their pre-stimulus baselines. 

Because of the considerable diversity in synchrony responses among MTC pairs, additional 

examples of UE analyses are presented in supplementary figure S2. At baseline, only 1.2% of 

MTC unit pairs showed synchronous spiking activity, indistinguishable from chance levels (i.e., 

1%). During fictive odor stimulation (1.0 seconds immediately following stimulus onset), 2.3% of 

all unit pairs fired synchronously, significantly more than baseline levels (two-sample t test, p < 

0.001, Figure 4B). 

Next, we asked whether fictive odor-evoked synchrony varied among MTCs based on how they 

responded to stimulation. Fast excitatory responses were easily identifiable in our data; 

however, at the low spontaneous firing rates commonly observed in in vitro, inhibitory responses 

could not easily be discerned from nonresponsiveness, and quantitatively screening for 

inhibition proved impractical. As a result, we dichotomously classified MTC responses to any 

given fictive odor as either “excitatory” or “non-responsive/inhibitory” (see Methods).  Whereas 

only 0.8% of unit pairs fired synchronously when neither unit displayed an excitatory response – 

a rate indistinguishable from chance – 8.4% of pairs of units with excitatory responses were 

synchronized (Figure 4C; see below for analysis). 

We next sought to determine whether the presence of measurable LFP gamma oscillations 

corresponded to increased rates of gamma-timescale spike synchrony in the recorded 

population. To test this, we identified the electrode with the strongest stimulus-evoked changes 

in gamma power, and grouped trials based on whether or not gamma was present on this 

electrode – i.e., whether overall EPL network activity was sufficiently strong and coordinated to 

generate a clear oscillatory field potential on the gamma timescale. Interestingly, we found that 

synchrony was modulated by gamma in a “response type”-dependent manner. Specifically, 

8.1% of unit pairs that displayed excitatory responses showed single-trial synchrony when 

gamma was not measurable, whereas 8.8% of excitatory unit pairs were synchronized on trials 

that also evoked clear fictive odor-evoked gamma. Unit pairs in which both units displayed non-

excitatory responses exhibited single-trial synchrony in 0.72% of trials in the absence of 

detectable gamma rhythmicity, compared to 0.87% of trials with clear gamma.  Two-factor 
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ANOVA indicated significant effects of both response type (F(1,103306) = 3571, p = 1.11e-16) 

and the presence of visible LFP gamma (F(1,103306) = 4.28, p = 0.038) on synchrony among 

pairs of MTCs.  The interaction was not significant (response type*gamma: F(1,103306) = 1.37, 

p = 0.24).  These results suggest that while afferent stimulation can evoke spike synchronization 

without increasing MTC spike rates (Figure 3D; supplementary Figure S2), it is more common 

that synchronized spikes arise from excited MTCs.  However, the majority of MTCs, excited or 

not, do not synchronize their action potentials on the gamma timescale in response to any given 

afferent stimulation.  MTC spike synchronization is a selective phenomenon.   

Fine timescale synchrony among pairs of MTCs varied across trials in accordance with the 

stimulus presented (Figure 5A-B). To systematically characterize the dependence of MTC 

synchrony on the quality and concentration of the fictive odor stimuli, we constructed response 

synchrony matrices for each trial composed of the surprise values between each pair of neurons 

recorded in the slice. These high-dimensional matrices then were projected onto a three-

dimensional principal component (PCA) space for visualization (Figure 5C). We used distance 

in PCA space to quantify the difference in response synchronization patterns to fictive odor 

stimuli of different qualities and intensities (“concentrations”); each distance was normalized to 

the mean distance between repeated presentations at the same quality and intensity. The 

synchronization patterns evoked by fictive odors of different quality were significantly more 

different from one another than responses on repeated trials (one-way ANOVA, F(2, 957) = 

39.4, p =- 4.91e-17, followed by Tukey HSD post hoc test, p < 0.001, Figure 5D), indicating that 

inter-odor variance in synchrony responses is greater than intra-odor variance, and that fine-

scale patterns of spike synchrony are conserved in odor representations and can distinguish 

odorants of different qualities from one another. In contrast, the synchronization patterns evoked 

by a given fictive odor at different “concentrations” showed no greater difference than repeated 

trials at the same intensity (Tukey HSD; p = 0.90; Figure 5D), indicating substantial 

concentration invariance in the spike synchronization pattern of odor responses.  Combined with 

the established selectivity of piriform cortex (PCx) for synchronized inputs (Luna & Schoppa, 

2008), this finding suggests that the improved concentration invariance of PCx principal neuron 

responses compared with bulbar MTC responses (Bolding & Franks, 2018) arises from MTC 

synchronization properties  That is, PCx neurons are selective for a feature of MTC responses – 

fast timescale spike synchronization – that discards the residual concentration-dependent 

stimulus variance observed in MTC responses when assessed at slower timescales.  This 

selectivity then would conclude a multistage procedure for distinguishing stimulus variance 

arising from odorant quality from that arising from concentration differences (Cleland et al., 

2011).   
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Discussion 

Spike synchronization is important for information processing and interareal communication 

across the brain. In the olfactory system, odors evoke synchronized spiking among MTCs and 

fast oscillations in the bulbar LFP, but the study of how olfactory information might be organized 

within a fast temporal framework has been challenging because of experimental limitations such 

as the low temporal resolution and replicability of odor stimulus delivery.  In the present study, 

we used optogenetics to present spatiotemporally patterned stimuli to OB slices while recording 

MTC ensemble responses electrophysiologically – an approach which enabled the presentation 

of “odor-like” stimuli with a level of statistical precision and replicability not possible with real 

odorants. These fictive odors evoked responses comparable to natural odor-evoked responses 

in terms of MTC unit firing rates, classical MTC response types, and fast LFP oscillations. 

Importantly, MTC responses also were marked by synchronized spiking – measured both as 

phase-locking to stimulus-evoked gamma oscillations and as patterns of increased spike 

synchrony among unit pairs. Spiking activity was most strongly synchronized among pairs of 

units with fast excitatory responses, and was modestly more synchronous on trials where the 

presented fictive odor evoked measurable gamma rhythmicity in the LFP. To dissect how the 

spike-timing properties of MTCs varied with odor “quality” and “concentration”, we systematically 

varied the parameters of fictive odor stimuli based on explicit models of these natural odor 

properties. We found that fast-timescale spike synchronization patterns were diagnostic of the 

“quality” of the fictive odor presented, and were conserved when the same fictive odor was 

presented at different “concentrations”.  Specifically, we computed NxN synchrony matrices 

consisting of pairwise surprise values among N recorded units, such that stimulus responses 

mapped to different manifolds in the matrix as a function of the quality of the fictive odor 

stimulus presented (Figure 5C). 

This analytical approach was based on a pairwise measure that reliably captured synchrony 

between spike trains in the data, which then was generalized to all possible unit pairs to 

generate ensemble response data. In principle, a nonpairwise metric of synchrony (such as the 

PLV) could have been used instead to construct an N-dimensional vector of each unit’s 

synchronization with overall population activity, as could be assessed by LFP recordings of 

gamma oscillations. We favored the pairwise unitary event analysis approach, because it is 

spike-spike synchrony, and not LFP gamma per se, that exerts downstream computational 

effects, and also because spike-LFP measures are less reliable as a method for comparing 

synchronization patterns across stimulus conditions. To wit, reliable LFPs were not always 

detected on recording electrodes for the diverse fictive odors presented, and could vary 

considerably across trials. 

Coding schemes based on spike timing provide considerable advantages over those based 

solely on firing rates.  For example, encoding information in firing rates is slow, because the 

outcome cannot be interpreted until the integration window over which the mean rate can be 

reliably calculated has concluded. In contrast, the activity of an ensemble of synchronized MTCs 

can be reliably communicated within a single gamma/beta cycle, and the analogue activation 

levels of neurons in a synchronized ensemble can be communicated unambiguously via spike 

phase (relative latency) (Linster & Cleland, 2010). Recent olfactory bulb models have used such 
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gamma-modulated spike timing-based representations together with iterative attractor dynamics 

to solve a critically underappreciated problem in olfaction:  how to recognize known odors 

despite the presence of destructive interference from competing background odors, in addition 

to the natural variance resulting from odor plume dynamics (Imam & Cleland, 2020). 

Concentration invariance arises from spike synchronization 

The olfactory system samples odor inputs that vary in concentration by orders of magnitude, yet 

the perceptual identity of an odor is largely stable across broad concentration ranges (Homma 

et al., 2019). This is a nontrivial problem, as odor quality and concentration both are mediated 

by changes in the activation profiles of odorant receptors that are not fully dissociable (see 

Methods: Stimulus modeling).  The early olfactory system deploys a series of concerted 

mechanisms to segregate quality variance from concentration variance (Cleland et al., 2012); 

however, even at the level of bulbar MTCs, odor responses still vary considerably with odor 

concentration (Bolding & Franks, 2018; Hamilton & Kauer, 1989; Imamura, Mataga, & Mori, 

1992). Odor representations in PCx, by comparison, are much more concentration-invariant, 

which has led to the hypothesis that PCx selectively extracts the most concentration-invariant 

feature(s) of its OB inputs (Bolding & Franks, 2018). Owing to the apparent concentration 

invariance of MTC odor representations when framed within a gamma-timescale spike 

synchronization metric (Figure 5), and the selectivity of PCx neurons for MTC spikes 

synchronized on that timescale (Luna & Schoppa, 2008), we propose that fast-timescale spike 

synchronization is that concentration-invariant feature. Notably, higher stimulus concentrations 

still may generate tighter synchrony among the ensemble of activated MTCs, thereby affording 

a means of communicating stimulus intensity so as to represent, for example, the intensive 

salience of an odor (Cleland & Borthakur, 2020; Cleland, Narla, & Boudadi, 2009).  

The odor-specificity of patterns of fast-timescale spike synchrony among MTCs – and the 

conservation of such patterns across stimulus intensity levels – indicate that these 

synchronization patterns can provide an effective physiological basis for the OB to communicate 

odor information to PCx and other projection targets. In this framework, gamma and beta field 

potential oscillations reveal the underlying dynamical organization of the olfactory system’s 

cellular networks, organizing the timing of stimulus-relevant MTC spikes for effective interareal 

communication.  Importantly, spikes emitted from active MTCs that are not synchronized to 

these oscillations would not effectively influence the activity of follower cells, whereas less 

active MTCs could still be recruited into active ensembles by careful reorganization of their 

spikes in time. The importance of MTC spike timing regulation affords granule cells, and by 

extension, the PCx feedback fibers which innervate them, a powerful and subtle influence on 

the nature of the information that MTCs export from the OB.   
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Methods 

Transgenic mice: Olfactory bulb slices were prepared from OMP-ChR2/EYFP (ORC-M) plasmid 

transgenic mice of both sexes (Dhawale, Hagiwara, Bhalla, Murthy, & Albeanu, 2010), initially 

provided by Venkatesh Murthy, Harvard University.  These mice coexpress channelrhodopsin-2 

(ChR2) and enhanced yellow fluorescent protein (EYFP) under the control of the olfactory 

marker protein (OMP) promoter, thereby targeting transgene expression to all OSN axonal 

arbors within the OB glomerular layer. All procedures for MEA experiments were performed 

under the auspices of a protocol approved by the Cornell University Institutional Animal Care 

and Use Committee (IACUC). Cornell University is accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care (AAALAC International). 

Microscopy and stimulus delivery: Optical stimulation was delivered by a high-speed (up to 1.44 

kHz refresh rate) digital light processing (DLP) projector (PROPixx, VPixx Technologies) 

utilizing RGB LEDs and a digital micromirror device (DMD) for stimulus control, with the stimulus 

image focused onto the OB slice by a customized series of lenses (Thorlabs Cerna microscope 

system; https://cplab.science/meascope). Images of the OB glomerular layer were taken by 

briefly illuminating the slice with 500±10 nm green light (Figure 1A; Thorlabs FB500-10), so as 

to activate EYFP while not strongly activating ChR2. Using custom Ceed software 

(https://cplab.science/ceed), spatially delimited stimulus fields (e.g., Figure 2A) were defined 

within the glomerular layer and separately programmed with temporal profiles of stimulus 

intensity. The resulting spatiotemporal profiles of blue light (470±50 nm bandpass; Semrock 

FF02-470/100-25) then were delivered to these stimulus fields to activate ChR2-expressing 

OSN arbors.  These “fictive odor” stimuli were presented for 5 seconds, intensity-modulated with 

a 6 Hz sinusoid (see Results), with intertrial intervals (ITIs) of 25 seconds.   

Stimulus modeling: How should odor stimuli be modeled using spatiotemporal patterns of light, 

combining what we know about the form and dynamics of natural odor activation of OB circuitry 

with the tighter control and replicability of optogenetic stimulation?  We here take a “naturalistic” 

approach to this problem, posing specific hypotheses about the properties of natural odor 

stimulation and constructing stimuli accordingly. For example, changes in either odor quality or 

concentration both alter the distribution of glomerular activation levels. Concentration increases, 

however, generally evoke monotonic increases in the activation levels of individual glomeruli 

(and also may progressively recruit some new, lower-affinity glomeruli). These increases will not 

be linearly proportional to one another across glomeruli, but to a substantial extent the ordinal 

ranking of glomerular activation levels should be preserved (Araneda, Kini, & Firestein, 2000; 

Gronowitz et al., 2021). Quality differences, in contrast, involve sharply different ordinal rankings 

of glomerular activation levels. These distinctions already have been exploited in network 

theories of concentration tolerance (Banerjee et al., 2015; Cleland & Borthakur, 2020; Cleland, 

Johnson, Leon, & Linster, 2007); the present work employs them to highlight the manifestation 

of concentration tolerance in the patterned spiking output of MTCs. 

Slice preparation: Horizontal slices (300 μm) were prepared from the olfactory bulbs of 5-12 

week old ORC-M mice.  Mice were anesthetized with 2% isoflurane, injected with ketamine (150 

mg/kg ip) as a neuroprotectant, and then decapitated, after which the olfactory bulbs were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.496396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496396
http://creativecommons.org/licenses/by-nc-nd/4.0/


quickly removed. Slices were cut on a vibrating microtome (Leica VT1000S) in an ice cold, 

oxygenated (with carbogen: 95% O2, 5% CO2), low-calcium/high-magnesium artificial 

cerebrospinal fluid (aCSF) dissection solution containing (in mM):  NaCl 124, KCl 2.54, 

NaHCO3 26, NaH2PO4 1.23, CaCl2 1, MgSO4 3, glucose 10 (Balu & Strowbridge, 2007). 

Slices then were incubated in oxygenated dissection solution at 37°C for twenty minutes, and 

then removed from incubation and maintained in this solution at room temperature until transfer 

to the recording well.  

Slice electrophysiology: Slices were placed on a 120-electrode planar multielectrode array 

(MEA; Multichannel Systems) and continuously superfused with heated (37°C), oxygenated 

recording aCSF containing (in mM): NaCl 125, KCl 3, NaHCO3 25, NaH2PO4 1.25, CaCl2 2, 

MgCl2 1, glucose 25 (Gire & Schoppa, 2008). Slices were aligned on the MEA by locating 

bands of spontaneous activity (spikes and local field potentials) that indicated the mitral cell and 

external plexiform layers (Figure 1B; Peace et al., 2018). The MEAs incorporated 120 titanium 

nitride electrodes (30µm diameter, 30-50 kΩ impedance, 200 µm pitch), embedded within a thin 

polyimide foil perforated (20-90 µm diameter perforations) to facilitate perfusion and 

oxygenation of the slice from both sides and to draw the slice down against the MEA with gentle 

vacuum, thereby improving the signal-to-noise ratio. Recordings were bandpass filtered (1 Hz – 

3.3 kHz) and amplified (1200x) before sampling at 20 kHz with a bit depth of 24 bits per sample.  

This bit depth enabled spike shapes to be recorded at high resolution even at amplifications low 

enough to also record LFPs. 

Spike sorting: Recorded data were zero-phase (forward + reverse) bandpass filtered between 

300 Hz – 3 kHz prior to offline spike sorting and unit identification using the SpykingCircus 

software package (Yger et al., 2018). Well-isolated candidate units were analyzed as single-unit 

data when (1) all spike events had amplitudes of greater than 5 standard deviations above the 

noise of the voltage signal (i.e., thresholded based on the signal to noise ratio of the individual 

recording), and (2) a refractory period was clearly visible in the interspike interval distribution. 

Any spikes not clearly separable by these criteria were treated as multiunit data. These 

conservative spike-sorting criteria were designed to minimize the likelihood of spikes from 

separate units being incorrectly combined into single-unit data, so as to improve the reliability of 

subsequent analyses of spike-mediated information.   

Analysis of stimulus-evoked responses: To visualize the instantaneous firing rates of single 

units, spike trains were convolved with a negative exponential kernel (20 ms time constant) for 

each trial, and then averaged across trials. Although considerable variability was observed in 

the time course of unit responses to stimulation, stimulus-responsive units generally displayed 

changes in firing rate shortly after stimulus onset (Figure 1). To capture these initial responses, 

unit firing rates were calculated during the first theta/sniff cycle (≈166 ms) of fictive odor 

stimulation and compared to spontaneous activity measured over the same period prior to 

stimulus onset. To identify responsive odor-unit pairs, we performed a one-sample t-test (two-

tailed, α=0.05) on the stimulus-evoked change in firing rate. Responsive odor-unit pairs were 

then classified as excitatory (“E”) or inhibitory (“I”) based on the directionality of the change in 

firing rate. All other odor-unit pairs were classified as non-responsive (“N”). This method of 

classifying odor-unit responses yielded qualitatively similar results across different values of α. 
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Spike-LFP analyses: Recorded data were low-pass filtered at 250 Hz and resampled at 500 Hz 

for LFP analysis. The Fitting Oscillations and One-Over-F (FOOOF) algorithm then was applied 

for parametric model-based decomposition of LFP power spectra to identify electrodes with 

spectral peaks in the gamma band (Donoghue et al., 2020; Supplementary Figure S1). LFP 

data from electrodes with detectable gamma peaks then were band-pass filtered from 20-55 Hz 

(third-order Butterworth filter), and the Hilbert transform was applied to extract phase 

information. To calculate phase-locking values (PLVs), each spike was represented by a unit 

vector with a phase derived from the concurrent LFP. Then, for a given time window, spike-LFP 

relationships can be described by a vector sum of all of the spikes occurring in that window; this 

vector sum is a complex number that contains both phase and amplitude information. The 

preferred phase for a neuron is determined by the phase of the vector sum, whereas the PLV, 

which represents the degree to which a particular neuron is synchronized to a particular phase 

of the LFP oscillation, is determined by the vector sum amplitude divided by the number of 

spikes during the trial. However, the PLV metric still is known to be biased with respect to the 

total number of spikes (Vinck, van Wingerden, Womelsdorf, Fries, & Pennartz, 2010). To correct 

this bias, we applied Rayleigh’s uniformity transformation to obtain a Z-score (𝑍 = 𝑛 × 𝑃𝐿𝑉2 , 

where 𝑛 is the number of spikes) and its corresponding p-value (𝑝 =  𝑒−𝑍), so as to assess the 

probability of observing a given PLV by chance given the spike count (Fisher, 1993). 

Importantly, the p-value resulting from this transformation is not being used as a hypothesis test 

for statistical significance, but as a corrected, standardized, descriptive metric of phase-locking 

between a spiking neuron and the underlying LFP.  Finally, to preclude the possibility of spikes 

being insufficiently filtered out of LFP recordings and thereby biasing PLV computation, we only 

compared spikes with LFP phases derived from different electrodes.  

Unitary event analysis: To assess spike-spike synchronization patterns without reference to the 

LFP, we performed unitary event analyses using disjunct (“fixed”) time bins (Grun, 2009; Grun, 

Diesmann, & Aertsen, 2002a; Grün, Diesmann, & Aertsen, 2010). The spiking activity of each 

recorded neuron was represented as a binary matrix with a 5 ms time discretization (in which a 

one represents the presence of at least one spike in the window, and a zero the absence of any 

spike).  This time discretization reflects an appropriate phase constraint window on the gamma 

timescale (Figure 3C) – e.g., 5 ms corresponds to one quarter cycle of a 50 Hz gamma 

oscillation.  For each pair of neurons, time bins containing spikes from both neurons in a given 

trial were defined as coincident events. The empirical coincidence count, nemp, then was 

calculated by summing the number of events across the first second of each stimulus 

presentation trial, across all ten trials. The probability of observing any value of nemp can be 

calculated analytically based on the mean firing rates of each neuron; however, this approach 

does not account for nonstationarities in firing rate within or across trials (Grun, 2009; Grun, 

Diesmann, & Aertsen, 2002b) – both of which were present in our data. To account for these 

nonstationarities, we generated 10,000 surrogate datasets for each spike train on a trial-by-trial 

basis by randomly dithering each spike within a window of ±10 ms of its original position. 

Coincident events then were calculated for each surrogate dataset to produce a distribution of 

expected coincident counts under the null hypothesis (nexp).  The probability of observing nemp 

coincidences within the distribution of nexp  then was used to evaluate the spike synchrony 

between neurons. Specifically, this probability was logarithmically transformed into the surprise 
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measure, 𝑆(𝑝) =  𝑙𝑜𝑔(
1−𝑝

𝑝
), which we used to compare group means and for visualization (Grun, 

2009; Palm, Aertsen, & Gerstein, 1988). 
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Figure 1.  Bulbar responses to optical stimulation. (A) Horizontal OB slice with fluorescing glomerular layer 

(green) shown on top of a 120-electrode array (50% transparency overlay). The location of the electrode shown in 

panel C is indicated (red dot). (B) 120-channel MEA recording showing a band of increased LFP power and spiking 

activity corresponding to the EPL/MCL layers in the OB slice. (C) Single electrode recording showing spiking activity 

from presumed MTCs evoked by optical stimulation (blue bar). (D) Raster plots of MTC responses to a series of 100 

ms light pulses presented at increasing light intensities. Individual rows within each raster each contain 10 trials 

delivered at a single intensity. (E) Instantaneous firing rates of the cells shown in panel D in response to light 

stimulation.  Spike trains were convolved with a negative exponential kernel (see Methods) and the results averaged 

across the ten trials with the highest stimulus intensity (723 µW/mm2). 
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Figure 2. MTC responses reflect fictive odor quality. (A) The regions of stimulation comprising two fictive odors 

(“A” and “B”) on an OB slice. (B) Diagram depicting the excitatory responses to fictive odors A and B as a percentage 

of all MTCs recorded in the slice. (C) Responses of an individual neuron to stimulation with fictive odors A and B, 

each presented at low (250 uW/mm2) and high (500 uW/mm2) peak intensities. Top frame: raster plot of 10 responses 

to fictive odor delivery, overlaid with the timecourse of the periodic light stimulus. Bottom frame: Instantaneous firing 

rate averaged across trials. Highlighted regions indicate stimulus duration. (D) Same as C1-C4, with a different MTC, 

selected to highlight response variability. 
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Figure 3. Gamma rhythmicity in MTC responses to fictive odor presentation. (A) Spectrogram showing 

stimulus-evoked gamma oscillations recorded from one selected electrode in response to fictive odors A and B (as 

depicted in Figure 2A), each presented for five seconds (delineated by vertical lines) at high and low intensities (same 

as in figure 2). Evoked gamma oscillations persisted following stimulus termination.  (B) Power spectra from the same 

electrode as panel A, measured during the five-second stimulus presentation and averaged across 20 trials for each 

odor (low and high intensities combined). (C) Circular histogram illustrating the spike phase distribution for all 

recorded MTCs combined (gray) and for a selected individual MTC (green) during stimulus-evoked gamma 

oscillations. In both cases, the distributions have a non-uniform distribution of phases (p<0.05 and p<0.001 for 

combined multi-unit activity (MUA) and single-unit responses, respectively). (D) Top: Time-resolved (5-second 

window, 100-ms step size) Z-score for the phase-locking of an individual neuron to the LFP gamma band; the green 

line indicates the Z-score corresponding to a p-value of 0.05. Bottom: Instantaneous firing rate of the same neuron 

(same window and step size). Both plots are from the same recording, and share the same time axis, as the 

spectrogram in panel A. Highlighted windows indicate periods of fictive odor stimulation. (E) Distribution of Rayleigh’s 

Z-scores for phase-locking of the MTC population in a single slice (n = 104 single units) during the pre-stimulus 

baseline (gray) and high intensity fictive odor stimulus (blue) periods. Horizontal lines denote p = 0.5 (bottom/gray) 

and p = 0.05 (top/green).  (F) Autocorrelograms for unit activity during baseline (gray) and stimulus (blue) periods. 
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Figure 4.  Fictive odor stimulation increases MTC-MTC pairwise synchrony (A1) Light intensity profile during a 

single fictive odor trial. (A2) Raster plots for two MTCs (purple and pink) in response to stimulation; each row is a 

single trial aligned to stimulus onset. Bins with coincident events are indicated with black rectangles. (A3) 

Instantaneous firing rates for the same neurons shown in panel B. (A4) Observed rates of coincident spiking between 

these two neurons, and expected coincident rates based on the surrogate data. (A5) Time-resolved statistical 

significance (logarithmically plotted as the surprise measure) of the coincidence rate.  Red line at surprise = 2.0 

indicates a significant level of spike synchrony at p = 0.01. (B) Distribution of surprise values (top), and percentages 

of pairs that are synchronized (bottom) for all recorded MTC units at baseline and during fictive odor stimulation (n = 

625 neurons, N = 5 slices). Horizontal bar in upper panel denotes significance boundary (α = 0.01); bar in lower panel 

indicates the percentage of synchronized pairs expected by chance (1%, based on α = 0.01). (C) Distribution of 

surprise values (top), and percentages of synchronized pairs (bottom) for MTC units based on their responses to 

fictive odor stimulation (N/I: non-responsive/inhibitory, E: excitatory), and on whether visible gamma rhythmicity was 

evoked on the reference electrode on a given trial (n = 209 units with E-type responses, 557 units with N-type 

responses, N = 5 slices).  
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Figure 5. Quality-specific spike synchrony (A) Left: Surprise values of pairwise spike synchronization from an 

example pair of MTCs across 10 fictive odor trials.  Spikes from this MTC pair are synchronized in response to 

fictive odor B (at both intensities), but not to fictive odor A. Right: Surprise values averaged across 10 trials for 

each condition. (B) Single trials of fictive odors A and B (high intensity) for the same pair of neurons as in panel A. 

Spikes are colored in pink (neuron 1, upper panels) or purple (neuron 2, lower panels). (C) Principal component 

analysis (PCA) representation of the synchrony matrix for all unit pairs in a single slice in response to the 

presentation of fictive odors A (red) and B (blue) at different “concentrations” (color saturation denotes relative 

intensity). Each dot represents an individual trial, and ellipsoids denote the mean ± 1 SD for each condition. (D) 

Average pairwise distances between repeated trials of a fictive odor stimulus at the same quality and 

concentration, trials that differed only in “concentration”, or trials that differed in quality, all normalized to the 

average intra-stimulus (repeat) distance.  Changes in fictive odor quality generate different synchrony matrices (p 

< .001), whereas changes in intensity do not (p = 0.90).  
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Supplementary figure S1. Locations of electrodes across an OB slice exhibiting significant power in the 

gamma band. Left: Horizontal OB slice (50% transparency overlay) laid atop a 120-electrode array expressing EYFP 

in the glomerular layer (green). Electrodes with detectable spectral peaks in the gamma band are labeled in magenta, 

forming a band immediately deep to the glomerular layer that presumably corresponds to the EPL/MCL. Right: 

Example of the FOOOF model (Donoghue et al., 2020) used to detect oscillations on each electrode. Presumptive 

oscillations are identified as periodic components (i.e., spectral peaks) rising above the aperiodic component of the 

signal (reflecting its 1/f characteristics). Here, a ~42 Hz gamma oscillation is identified.  A second, smaller peak at ~6 

Hz arises from the 6 Hz sinusoidal modulation of fictive odor input. 
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Supplementary figure S2. Examples of pairwise synchrony shown with time-resolved UE analysis. For a 

description of the different plots within each panel, see legend for Figure 4A. (A) A pair of neurons that are both 

excited by the fictive odor, resulting in theta-modulated synchrony for a full second. (B) Similar to A, except theta-

modulated synchrony only lasts a couple of cycles before returning to baseline levels. (C) A pair of neurons that are 

both activated by a fictive odor input resulting in synchronization. As spike rates return to baseline levels, the 

synchrony persists, but becomes decoupled from the theta rhythm. (D) Only one neuron in the pair is excited by the 

fictive odor, resulting in weaker synchrony that is not theta-modulated. 
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