
0 50 100 150 200 250 ms

2 Design principles of the Myriad simulator

Pedro Rittner1 & Thomas A. Cleland2

1Dept. Computer Science, 2Dept. Psychology, Cornell University, Ithaca, NY

Myriad : a transparently parallel GPU-based simulator
for densely integrated biophysical models

Implementational Details

Planned Extensions

Why another simulator?

Computational Physiology Laboratory

Granularity enables highly flexible model design 53

187.02 TT51

• Larger network models demand multicore computational tools. However, densely

integrated network models, in which many nodes must update one another at

every timestep (such as many biophysical models), are ill-suited for execution on

computational clusters due to slow inter-node communication.

1

Interested?

• Myriad is an open-source project that soon will be open for

community participation.

(A) Design a radically granular low-level implementation framework

enabling the “trivial parallelization” of any model.

(B) Take maximum advantage of this parallelization capacity by enabling

execution on GPUs, including consumer video cards.

(C) Improve ease-of-use with a separate user interface level based on

familiar concepts and hierarchies.

• Myriad removes all hierarchy from compartmental models, recognizing only two

computational elements: compartments with passive properties and mechanisms that

connect exactly two compartments in exactly one direction.

• An integral number of these computational elements can be executed on any available core.

• Communication among computational elements is based on a uniform memory access

(UMA) shared memory architecture, with each core having equal access to shared memory.

• To adhere to these best practices, Myriad incorporates a separate “user level”, written in

Python, in which users construct models using tools from the Python myriad module. Python

metaprogramming is then used to generate “implementation level” C code on the fly for

execution on GPU or CPU cores.

• Because of its radically granular architecture, and GPU barrier synchronization, Myriad is fully

thread-scalable to any number of available GPU threads without explicit optimization.

• The reduced GPU instruction set limits the extensibility of GPU-enabled applications. We

have circumvented this limitation by developing the first object-oriented programming (OOP)

model that runs natively on GPUs under CUDA, including on-GPU dynamic type inference

and built-in inheritance (Rittner and Cleland, 2014).

• Best practices in model definition include the flexible rescaling of parameters such as model

dimensions and numbers of compartments, the abstraction of neuronal regions into sections

that share properties, the hierarchical segregation of neuron (template) definitions from network

definition, and the inclusion of familiar concepts such as an extracellular reference space

(Carnevale and Hines, 2006).

• Users retain full flexibility in model definition at the Python level because of the minimal OOP

model constructed for the implementation level. This enables the end-user to define wholly

novel objects and mechanisms such as ion channels (or even ions), by defining fully extensible,

user-defined models to be run on GPU. This innovation also enables models to be written

identically for CPU and GPU execution, switching between the two via a compiler option.

6

7

(A) Neuron receiving inputs from two presynaptic

neurons: one normal synapse from a myelinated axon

and one specialized synapse (from an unmyelinated

axon) in which the user wishes to model the synaptic

cleft explicitly as a separate compartment.

(B) Schematic example of Myriad compartments and mechanisms. Compartment and mechanism objects incorporate

user-defined equations. A single extracellular space compartment here connects to all compartments except the synaptic

cleft (multiple extracellular spaces also are supported). Adjacency is implemented as paired reciprocal mechanisms.

Axons (myelinated sections,

nodes of Ranvier)

Soma

Presynaptic boutons Synaptic cleft

Dendrite

Synapse mechanisms can be modeled as aggregate transfer

functions (upper), by separating out neurotransmitter release

equations from receptor binding and activation processes (lower),

or by other user-defined schemes.

Adjacency

mechanisms

• Extend Myriad to a nonuniform memory access architecture to

support multiple CUDA cards on a single high-speed bus.

• Implement simulation governor to run multiple instances in series

or in parallel (e.g., on distributed-architecture GPU clusters), to

support parameter exploration and algorithmic optimization.

• Importantly, the user does not need to write any code specifically to enable parallelization of

their model, which can be a substantial barrier to end users.

• Provide advanced users access to Myriad’s code generation API.

• Myriad is an arbitrarily programmable GPU-enabled computational

framework that is in principle as appropriate for (e.g.) 3-D spatial

diffusion models as for neuronal modeling. Assess Myriad’s utility

for these different applications, and their synthesis.

• If you are interested in early-stage access as a contributor,

please send a detailed email to both authors describing the

reasons for your interest and your relevant skills in Python, C, and

GPU coding as well as in neuroscience and related fields.

• If you are interested in beta testing as an end user, please send

an email to both authors and/or sign up on the provided list.

References & Acknowledgments

Rittner P, Cleland TA (2014) The MYRIAD simulator: densely coupled realistic neural

networks on GPU. GPU Technology Conference, San Jose, CA.

http://www.gputechconf.com/

Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge, UK: Cambridge

University Press.

8

This research was supported by an equipment grant from the NVIDIA Corporation.

• Current general-purpose implementations are difficult to parallelize and require

special coding to achieve limited multiprocessing capabilities. An ideal solution

would separate the biophysical problems from the optimization problems.

• GPU hardware is a promising tool for mesoscale parallel simulations, but effective

use requires a simulator designed specifically with the strengths and limitations of

GPU hardware in mind.

Simulation examples4

 C99 standard-compliant

• Extremely portable

kernels for x86_64

• Upgrade path to C11

• Supports clang, GCC,

ICC, possibly MVCC

 <pthread.h> on CPU

• Portable and low

overhead costs

• Upgrade path to C11

<threads.h>

 Python 3.4+ Frontend

• Type annotation support

• “Future-proof” ABI

• Built-in pip, asyncio

 Python 3.x metaclasses

• Code creation at parse

time, one-time cost

• No namespace collisions

• Automatic dependency

injection for subclasses

• Opt-out for advanced

users

 Incremental compilation

• One-time startup cost

• Uses make backend

 Efficient analysis IPC

• POSIX shared memory

• Zero copy from simulation

kernel to analysis frontend

 Zero-cost abstractions

• Objects are stored as

POD structs with one

class pointer.

 No memory leaks

• Single heap allocation

• Automatic memory

management in kernel.

• Maximizes stack usage

 Barrier synchronization

• Supported by pthreads

• Also in CUDA driver

• Robust ordering

semantics support

 Export to NeuroML

• Import support currently

being investigated.

 Data export via Numpy

• Supported via automatic

attribute conversion.

• Scipy and Matplotlib

support comes “free” as a

result.

 Automatic Doxygen

Documentation

• For all C modules

 JIT Support for CUDA

• Use “fat binary” option to

increase compilation time

but with faster binaries

 Fully-configurable

compile-time options

• From low-level (e.g. -O

optimization level) to

high-level (e.g. force

heap memory usage).

Author emails: pr273@cornell.edu, tac29@cornell.edu

All-to-all

(A) 100 Hodgkin-Huxley neurons coupled with inhibitory synapses to form an interneuron network

gamma (ING) oscillatory network.

0 20 40 ms3010

(B) Two Hodgkin-Huxley neurons, separated or

connected with a gap junction

(C) Python metaprogramming example and

user level code prototype

Example simulations coded at

the implementation level in C

http://www.gputechconf.com/

