

# The Myriad simulator: parallel computation for densely integrated models

| <b>1</b> Why and                                                                                                                                                                                                                                                                             | other simulator?                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Larger network models, especially many biophysical model<br/>inter- and intra-neuron interactions with multiple non-linear<br/>Such <i>densely integrated</i> circuits are poorly optimized in ge<br/>simulators, devolving into solving multiple stiff equations linear</li> </ul> |                                                                                                                                                                                                                                                                                   |
| <ul> <li>Modelers must of<br/>purpose simulator</li> <li>special coding to</li> </ul>                                                                                                                                                                                                        | ften trade performance for biophysical ac<br>ors' implementations being difficult to para<br>achieve limited multiprocessing capabilit                                                                                                                                            |
| <ul> <li>Myriad separates model design and code optimization into<br/>connected by powerful code generation middleware, enab<br/>multithreading capabilities on commodity hardware, GPUs</li> </ul>                                                                                          |                                                                                                                                                                                                                                                                                   |
| <b>2 Design c</b>                                                                                                                                                                                                                                                                            | overview of the Myriad sim                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                              | Idiomatic Python 3 with optional C optional                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                              | <ul> <li>High-level abstractions for neurons,<br/>and network properties.</li> </ul>                                                                                                                                                                                              |
| User Code<br>&<br>Support<br>Libraries<br>(Python)                                                                                                                                                                                                                                           | Mechanisms and other elements (p<br>pumps, etc.) are user-definable with<br>inheritance (e.g., channels inherit p<br>ions that they flux).                                                                                                                                        |
|                                                                                                                                                                                                                                                                                              | <ul> <li>Simulations are represented as object<br/>parameter searches and reproducit</li> </ul>                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              | <ul> <li>Inheritance functionality via Python'</li> <li>Automatic access to properties of</li> <li>Functionality can be extended &amp;</li> </ul>                                                                                                                                 |
|                                                                                                                                                                                                                                                                                              | <ul> <li>Mako templates for converting user<br/>and Python-compatible structures for</li> </ul>                                                                                                                                                                                   |
| Compilation<br>&<br>Data Transfer<br>Middleware<br>(CPython)                                                                                                                                                                                                                                 | <ul> <li><u>Removes all hierarchy from compar</u><br/>recognizing only two computational</li> <li><i>Compartments</i> (isometric) with p</li> <li><i>Mechanisms</i> that connect exactly<br/>exactly one direction. (Connection<br/>extracellular medium are a special</li> </ul> |
|                                                                                                                                                                                                                                                                                              | AST-to-AST translation of Python content                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                              | <ul> <li>Each compartment or mechanism is t<br/>computational element, enabling par<br/>separate CPU threads or GPU CUDA<br/>updated via shared memory access.</li> </ul>                                                                                                         |
| Simulation<br>Backend<br>&                                                                                                                                                                                                                                                                   | <ul> <li>Synchronization via barrier intrinsics a<br/>safe access to shared data without ra</li> </ul>                                                                                                                                                                            |
| Optimization<br>(C + CUDA C)                                                                                                                                                                                                                                                                 | Separate compilation phase enables of aggressively inline mechanism and compilation                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                              | POSIX message queues used as sign<br>communicating data between the from<br>executable via Unix Domain Sockets                                                                                                                                                                    |



## Pedro Rittner , Andrew J. Davies, Thomas A. Cleland<sup>1</sup> <sup>1</sup>Dept. of Psychology, Cornell University, Ithaca, NY

http://www.gputechconf.com/ Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge, UK: Cambridge University Press.

This research was supported by an equipment grant from the NVIDIA Corporation.



**Computational Physiology Laboratory** 

#### 451.12 / DD-58

#### **5** User extension example: AMPA Synapse with STDP

# Using Model 3 from Sjostrom, Turrigiano, & Nelson # Post-synaptic compartment spike threshold post spike thresh = Unit(mV, 10.0) pre\_spike\_thresh = Unit(mV, 10.0) # State to keep track of time each compartment fired P synaptic strengthening factor naptic weakening factor

# Synaptic weight and maximum weight value

def calc\_current(self, pre\_syn\_comp, post\_syn\_comp, step, global\_time) # We can get the AMPA current calculation from our parent I\_AMPA = super().calc\_current(pre\_syn\_comp, post\_syn\_comp) # Weight change (to be calculated)

# Get post-synaptic cell's current/previous membrane voltage post\_vm\_curr = post\_syn\_comp.vm[step] post\_vm\_prev = post\_syn\_comp.vm[step - 1] # If the post-synaptic cell has spiked if (post\_vm\_curr >= self.post\_spike\_thresh and post\_vm\_prev <= self.post\_spike\_thresh):</pre> # If the presynaptic spike is in if (global\_time - self.t\_pre <= self.t\_ltp\_edge):</pre> delta\_t = m\_fabs(self.t\_pre - global\_time) d\_omega = self.a\_plus \* m\_exp(delta\_t / self.tau\_plus) self.t\_post = -INFINITY # Otherwise, just set the time we fired (current global time) self.t\_post = global\_time # Get pre-synaptic cell's current/previous membrane voltage pre\_vm\_curr = pre\_syn\_comp.vm[step] pre\_vm\_prev = pre\_syn\_comp.vm[step - 1] # If the pre-synaptic cell has spiked if (pre\_vm\_curr >= self.pre\_spike\_thresh and pre\_vm\_prev <= my\_stdp\_ampa\_curr->pre\_spike\_thresh): # If the postsynaptic spike is in our window, weaken the weight if (global\_time - self.t\_post <= self.t\_ltd\_edge and</pre> self->t\_pre < self->t\_post): delta\_t = m\_fabs(self.t\_post - global\_time) d\_omega = self.a\_plus \* m\_exp(delta\_t / self.tau\_plus) self.t\_post = -INFINITY self.t\_pre = global\_time # Alter the weight based on above calculations self->omega += delta\_omega # Bound the weight between 0 and omega\_max

if (self.omega < 0.0):</pre> self.omega = 0.0; elif (self.omega > self.omega\_max);

self.omega = self.omega\_max

# Return the current times the synaptic weight return I AMPA \* self->omega

This example inherits from a previously-defined, out-of-source AMPA synapse **mechanism**.

Here, the user defines several state variables that are *owned* by the STDPAMPASyn mechanism, where each instance has its own copy.

Default values are provided here, though these are optional. The constructor is elided by the middleware.

Values are expressed as either of *Unit* or *MDouble*, a generic unitless type.

The parser uses the @myriad\_method annotation (highlighted in a red rectangle) in order to know which methods to convert at parse-time.

#### **Planned Extensions**

Docker support for facilitating deployments is planned on release

Implement simulation governor to run multiple instances in series or in parallel (e.g., on distributed-architecture GPU clusters), to support parameter exploration and algorithmic optimization.

Myriad is an arbitrarily programmable GPU-enabled computational framework that is in principle as appropriate for (e.g.) 3-D spatial diffusion models as for neuronal modeling. Assess Myriad's utility for these different applications, and their synthesis.

Extend Myriad to a nonuniform memory access architecture to support multiple CUDA cards on a single high-speed bus (NVLink).

### **7 References & Acknowledgments**

Rittner P, Cleland TA (2014) The MYRIAD simulator: densely coupled realistic neural networks on GPU. GPU Technology Conference, San Jose, CA.